Sazzad Hassan

Learn More
Prostate cancer patients have increased levels of stress and anxiety. Conversely, men who take beta blockers, which interfere with signaling from the stress hormones adrenaline and noradrenaline, have a lower incidence of prostate cancer; however, the mechanisms underlying stress-prostate cancer interactions are unknown. Here, we report that stress promotes(More)
Androgens control growth of prostate epithelial cells and androgen deprivation induces apoptosis, leading to prostate involution. We investigated the effects of surgical stress on prostate involution induced by androgen ablation and determined the underlying mechanisms. Androgen ablation in mice was induced by surgical castration and administration of the(More)
PTEN loss and constitutive activation of the PI3K signaling pathway have been associated with advanced androgen-independent prostate cancer. PTEN-deficient prostate cancer C42Luc cells survive in serum-free media and show relative resistance to apoptosis even in the presence of the PI3K inhibitor ZSTK474. Yet, when ZSTK474 is combined with the translation(More)
The phosphatidylinositol-3-kinase/Akt (PI3K/Akt) pathway is constitutively activated in a substantial proportion of prostate tumors and is considered a key mechanism supporting progression toward an androgen-independent status, for which no effective therapy is available. Therefore, PI3K inhibitors, alone or in combination with other cytotoxic drugs, could(More)
The phosphoinositide 3-kinase (PI3K) pathway is activated in most advanced prostate cancers, yet so far treatments with PI3K inhibitors have been at best tumorostatic in preclinical cancer models and do not show significant antitumor efficacy in clinical trials. Results from tissue culture experiments in prostate cancer cells suggest that PI3K inhibitors(More)
In mouse models of prostate cancer, increased epinephrine levels accelerated tumor growth via the beta2-adrenoreceptor/PKA signaling pathway. It is unknown, however, whether men experience increased epinephrine levels sufficient to activate the beta2-adrenoreceptor/PKA pathway in the prostate gland. We measured epinephrine levels in blood samples collected(More)
  • 1