#### Filter Results:

- Full text PDF available (5)

#### Publication Year

2006

2013

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Mohamed El-Ghali M. Abdallah, L. N. Gab-Alla, Sayed Khalil M. Elagan
- Int. J. Math. Mathematical Sciences
- 2006

A q partial group is defined to be a partial group, that is, a strong semilattice of groups S = [E(S);S e ,ϕ e, f ] such that S has an identity 1 and ϕ 1,e is an epimorphism for all e ∈ E(S). Every partial group S with identity contains a unique maximal q partial group Q(S) such that (Q(S)) 1 = S 1. This Q operation is proved to commute with Cartesian… (More)

- Mohamed El-Ghali M. Abdallah, L. N. Gab-Alla, Sayed Khalil M. Elagan
- Int. J. Math. Mathematical Sciences
- 2006

A known result in groups concerning the inheritance of minimal conditions on normal subgroups by subgroups with finite indexes is extended to semilattices of groups [E(S), S e , ϕ e, f ] with identities in which all ϕ e, f are epimorphisms (called q partial groups). Formulation of this result in terms of q congruences is also obtained.

The main purpose of this paper is to study the existence of a fixed points in fuzzy n-normed spaces. we proved our main results, a fixed point theorem for a self mapping and a common fixed point theorem for a pair of weakly compatible mappings on fuzzy n-normed spaces. Also we gave some remarks on fuzzy n-normed spaces. A Pseudo-Euclidean space is a… (More)

The purpose of this paper is to introduce finite convergence sequences and functions preserving convergence of series in fuzzy n-normed spaces. A Pseudo-Euclidean space is a particular Smarandache space defined on a Euclidean space R n such that a straight line passing through a point p may turn an angle θ p ≥ 0. If θ p > 0 , then p is called a… (More)

- Sayed Elagan
- 2013

It is shown that every fuzzy n-normed space naturally induces a locally convex topology, and that every finite dimensional fuzzy n-normed space is complete. A Smarandache space is such a space that a straight line passing through a point p may turn an angle θ p ≥ 0. If θ p > 0 , then p is called a non-Euclidean. Otherwise, we call it an Euclidean point. In… (More)

- ‹
- 1
- ›