Learn More
Action Unit (AU) detection from facial images is an important classification task in affective computing. However most existing approaches use carefully engineered feature extractors along with off-the-shelf classifiers. There has also been less focus on how well classifiers generalize when tested on different datasets. In our paper, we propose a(More)
Evolutionary optimization algorithms have been recently applied to optimal digital IIR filter design. In this paper, we apply a Bandwidth Adaptive Harmony Search (BAHS) algorithm to the design of 1-dimensional IIR filters. Harmony Search is an evolutionary algorithm, which emulates the improvisation process of musicians. We have modified the algorithm by(More)
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward(More)
Particle Swarm Optimization (PSO) is arguably one of the most popular nature-inspired algorithms for real parameter optimization at present. The existing theoretical research on PSO focuses on the issues like stability, convergence, and explosion of the swarm. However , all of them are based on the gbest (global best) communication topology, which usually(More)
Particle Swarm Optimization (PSO) is arguably one of the most popular nature- inspired algorithms for real parameter optimization at present. The existing theoretical research on PSO is mostly based on the gbest (global best) particle topology, which usually is susceptible to false or premature convergence over multi-modal fitness landscapes. The present(More)
This paper describes a method for improving the final accuracy and the convergence speed of Particle Swarm Optimization (PSO) by adapting its inertia factor in the velocity updating equation and also by adding a new coefficient to the position updating equation. These modifications do not impose any serious requirements on the basic algorithm in terms of(More)
Particle Swarm Optimization (PSO) has recently emerged as a nature-inspired algorithm for real parameter optimization. This article describes a method for improving the final accuracy and the convergence speed of PSO by firstly adding a new coefficient (called mobility factor) to the position updating equation and secondly modulating the inertia weight(More)
Invasive weed optimization (IWO) has been found to be a simple but powerful algorithm for function optimization over continuous spaces. It has reportedly outperformed many types of evolutionary algorithms and other search heuristics when tested over both benchmark and real-world problems. This article describes the design of Fractional-Order(More)
The increasing prevalence of psychological distress disorders, such as depression and post-traumatic stress, necessitates a serious effort to create new tools and technologies to help with their diagnosis and treatment. In recent years, new computational approaches were proposed to objectively analyze patient non-verbal behaviors over the duration of the(More)