Sawrav Josh Mukherji

Learn More
Ca2+/calmodulin-dependent protein kinase II (CaM-KII) regulates numerous physiological functions, including neuronal synaptic plasticity through the phosphorylation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. To identify proteins that may interact with and modulate CaM-KII function, a yeast two-hybrid screen was(More)
Ca(2+)-sensitive kinases are thought to play a role in long-term potentiation (LTP). To test the involvement of Ca2+/calmodulin-dependent kinase II (CaM-K II), truncated, constitutively active form of this kinase was directly injected into CA1 hippocampal pyramidal cells. Inclusion of CaM-K II in the recording pipette resulted in a gradual increase in the(More)
The gaseous neurotransmitter nitric oxide plays an important role in the modulation of corticostriatal synaptic transmission. This study examined the impact of frontal cortex stimulation on striatal nitric oxide efflux and neuron activity in urethane-anesthetized rats using amperometric microsensor and single-unit extracellular recordings, respectively.(More)
A second isoform of Ca2+/calmodulin-dependent-kinase II inhibitor protein (CaM-KIIN) has been identified using the yeast two-hybrid screen. The 1.8kb message encodes a 78 residue CaM-KIINalpha that is 65% identical in its putative open-reading frame and 95% identical in its inhibitory domain to the previously characterized CaM-KIINbeta. CaM-KIINalpha(More)
  • 1