Learn More
This paper presents a method for classification of liver ultrasound images based on texture analysis. The proposed method uses a set of seven texture features having high discriminative power which can be used by radiologists to classify the liver. Feature extraction is carried out using the following texture Based upon the results of Linear Discriminative(More)
A novel speckle-reduction method is introduced, based on soft thresholding of the wavelet coefficients of a logarithmically transformed medical ultrasound image. The method is based on the generalised Gaussian distributed (GGD) modelling of sub-band coefficients. The method used was a variant of the recently published BayesShrink method by Chang and(More)
In this paper, we review the different studies that developed Computer Aided Diagnostic (CAD) for automated classification of thyroid cancer into benign and malignant types. Specifically, we discuss the different types of features that are used to study and analyze the differences between benign and malignant thyroid nodules. These features can be broadly(More)
Stroke is the third major cause of death worldwide behind heart disease and cancer. Carotid atherosclerosis is the most frequent cause of ischemic stroke. Early diagnosis of carotid plaque and serial monitoring of its size with the help of imaging modalities can help to prevent the atherosclerotic complications. The main difficulty is inevitable variability(More)
Most existing wavelet-based image denoising techniques are developed for additive white Gaussian noise. In applications to speckle reduction in medical ultrasound (US) images, the traditional approach is first to perform the logarithmic transform (homomorphic processing) to convert the multiplicative speckle noise model to an additive one, and then the(More)