Saverio Mascolo

Learn More
TCP Westwood (TCPW) is a sender-side modification of the TCP congestion window algorithm that improves upon the performance of TCP Reno in wired as well as wireless networks. The improvement is most significant in wireless networks with lossy links, since TCP Westwood relies on end-to-end bandwidth estimation to discriminate the cause of packet loss(More)
TCP Westwood (TCPW) is a sender-side modification of the TCP congestion window algorithm that improves upon the performance of TCP Reno in wired as well as wireless networks. The improvement is most significant in wireless networks with lossy links. In fact, TCPW performance is not very sensitive to random errors, while TCP Reno is equally sensitive to(More)
We study the performance of TCP Westwood (TCPW), a new TCP protocol with a sender-side modification of the window congestion control scheme. TCP Westwood controls the window using end-to-end rate estimation in a way which is totally transparent to routers and to the destination. Thus, it is compatible with any network and TCP implementation. The key(More)
TCP congestion control has been designed to ensure Internet stability along with fair and efficient allocation of the network bandwidth. During the last decade, many congestion control algorithms have been proposed to improve the classic Tahoe/Reno TCP congestion control. This paper aims at evaluating and comparing three control algorithms, which are(More)
TCP Westwood (TCPW) is a sender-side modification of the TCP congestion window algorithm that improves upon the performance of TCP Reno in wired as well as wireless networks. The improvement is most significant in wireless networks with lossy links. In fact, TCPW performance is not very sensitive to random errors, while TCP Reno is equally sensitivity to(More)
High-speed communication networks are characterized by large bandwidth-delay products. This may have an adverse impact on the stability of closed-loop congestion control algorithms. In this paper, classical control theory and Smith's principle are proposed as key tools for designing an e!ective and simple congestion control law for high-speed data networks.(More)
Modern production facilities (i.e., flexible manufacturing systems) exhibit a high degree of resource sharing, a situation in which deadlocks (circular waits) can arise. Using digraph theoretic concepts we derive necessary and sufficient conditions for a deadlock occurrence and rigorously characterize highly undesirable situations (second level deadlocks),(More)
Akamai o ers the largest Content Delivery Network (CDN) service in the world. Building upon its CDN, it recently started to offer High De nition (HD) video distribution using HTTP-based adaptive video streaming. In this paper we experimentally investigate the performance of this new Akamai service aiming at measuring how fast the video quality tracks the(More)
Among the problems affecting the current version of TCP are the slow recovery upon a coarse timeout expiration on long, fat pipes, and the reaction to random segment losses. Both problems are known to reduce the throughput of a connection. In our paper, we propose and evaluate the merits of a class of TCP modifications obtained through a source-based(More)
Westwood+ TCP is a sender-side only modification of the classic Tahoe/Reno TCP that has been recently proposed to improve fairness and efficiency of TCP. The key idea of Westwood+ TCP is to perform an end-to-end estimate of the bandwidth available for a TCP connection by properly counting and filtering the stream of ACK packets. This estimate is used to(More)