Savannah C. Partridge

Learn More
Magnetic resonance diffusion tensor imaging (DTI) enables the discrimination of white matter pathways before myelination is evident histologically or on conventional MRI. In this investigation, 14 premature neonates with no evidence of white matter abnormalities by conventional MRI were studied with DTI. A custom MR-compatible incubator with a novel high(More)
Diffusion tensor MRI (DTI) fiber tracking is the first non-invasive and in vivo technique for the delineation and quantitation of specific white matter pathways. In this study, quantitative fiber tracking was used to assess the structural development of the motor tract and somatosensory radiation in premature human newborns. These pathways are unmyelinated(More)
Diffusion tensor imaging (DTI) was used to delineate early laminar organization of the cerebrum in two extremely premature infants imaged postnatally at estimated ages of 25 and 27 menstrual weeks. The diffusivity and anisotropy of the cortical plate, subplate zone, intermediate zone, subventricular and periventricular zones, and germinal matrix are(More)
This study assessed microstructural development in four regions of the human cerebral cortex during preterm maturation using diffusion tensor imaging (DTI), compared to the macrostructural development of cortical gyration evaluated using three-dimensional volumetric T1-weighted MR imaging. Thirty-seven premature infants of estimated gestational age (EGA)(More)
PURPOSE To evaluate the feasibility of performing diffusion tensor tractography (DTT) to map and quantify the pyramidal white matter tracts of premature newborns. MATERIALS AND METHODS Fourteen diffusion tensor MRI (DTI) examinations of nine premature newborns were evaluated. DTT was performed to segment bilateral pyramidal tracts, using a fiber-tracking(More)
INTRODUCTION Posterior fossa tumors are the most common brain tumor of children. Aggressive resection correlates with long-term survival. A high incidence of posterior fossa syndrome (PFS), impairing the quality of life in many survivors, has been attributed to damage to bilateral dentate nucleus or to cerebellar output pathways. Using diffusion tensor(More)
This study investigated the relationship between apparent diffusion coefficient (ADC) measures and dynamic contrast-enhanced magnetic resonance imaging (MRI) kinetics in breast lesions and evaluated the relative diagnostic value of each quantitative parameter. Seventy-seven women with 100 breast lesions (27 malignant and 73 benign) underwent both dynamic(More)
Although diffusion MRI has shown promise for the characterization of breast cancer, it has low specificity to malignant subtypes. Higher specificity might be achieved if the effects of cell morphology and molecular exchange across cell membranes could be disentangled. The quantification of exchange might thus allow the differentiation of different types of(More)
Magnetic resonance imaging (MRI) may guide breast cancer surgery by measuring residual tumor size post-neoadjuvant chemotherapy (NAC). Accurate measurement may avoid overly radical surgery or reduce the need for repeat surgery. This individual patient data (IPD) meta-analysis examines MRI’s agreement with pathology in measuring the longest tumor diameter(More)
The significant advances in magnetic resonance imaging (MRI) hardware and software, sequence design, and postprocessing methods have made diffusion-weighted imaging (DWI) an important part of body MRI protocols and have fueled extensive research on quantitative diffusion outside the brain, particularly in the oncologic setting. In this review, we summarize(More)