Learn More
When we write or prepare to write a research paper, we always have appropriate references in mind. However, there are most likely references we have missed and should have been read and cited. As such a good citation recommendation system would not only improve our paper but, overall, the efficiency and quality of literature search. Usually, a citation's(More)
Disambiguating entity references by annotating them with unique ids from a catalog is a critical step in the enrichment of unstructured content. In this paper, we show that topic models, such as Latent Dirichlet Allocation (LDA) and its hierarchical variants, form a natural class of models for learning accurate entity disambiguation models from(More)
In a document network such as a citation network of scientific documents, web-logs, etc., the content produced by authors exhibits their interest in certain topics. In addition some authors influence other authors' interests. In this work, we propose to model the influence of cited authors along with the interests of citing authors. Moreover, we hypothesize(More)
In an interlinked corpus of documents, the context in which a citation appears provides extra information about the cited document. However, associating terms in the context to the cited document remains an open problem. We propose a novel document generation approach that statistically incorporates the context in which a document links to another document.(More)
Authors use images to present a wide variety of important information in documents. For example, two-dimensional (2-D) plots display important data in scientific publications. Often, end-users seek to extract this data and convert it into a machine-processible form so that the data can be analyzed automatically or compared with other existing data. Existing(More)
Two dimensional plots (2-D) in digital documents on the web are an important source of information that is largely under-utilized. In this paper, we outline how data and text can be extracted automatically from these 2-D plots, thus eliminating a time consuming manual process. Our information extraction algorithm identifies the axes of the figures, extracts(More)
Most search engines index the textual content of documents in digital libraries. However, scholarly articles frequently report important findings in figures for visual impact and the contents of these figures are not indexed. These contents are often invaluable to the researcher in various fields, for the purposes of direct comparison with their own work.(More)
With the exponential increase in the number of documents available online, e.g., news articles, weblogs, scientific documents, effective and efficient classification methods are required in order to deliver the appropriate information to specific users or groups. The performance of document classifiers critically depends, among other things, on the choice(More)
This paper introduces a new framework for supervised sound source localization referred to as virtually-supervised learning. An acoustic shoe-box room simulator is used to generate a large number of binaural single-source audio scenes. These scenes are used to build a dataset of spatial binaural features annotated with acoustic properties such as the 3D(More)
In this paper, we propose a framework of recommending users and communities in social media. Given a user's profile, our framework is capable of recommending influential users and topic-cohesive interactive communities that are most relevant to the given user. In our framework, we present a generative topic model to discover user-oriented and(More)