Saumya Nagar

Learn More
Parkinson's disease (PD) is characterized by loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). An association has been reported between PD and exposure to mitochondrial toxins, including environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived stem cell model of PD allowing comparison of(More)
Nitric oxide (NO) is a gasotransmitter that impacts fundamental aspects of neuronal function in large measure through S-nitrosylation, a redox reaction that occurs on regulatory cysteine thiol groups. For instance, S-nitrosylation regulates enzymatic activity of target proteins via inhibition of active site cysteine residues or via allosteric regulation of(More)
Deafferentation is known to cause significant changes in the postsynaptic neurons in the central nervous system. Loss of photoreceptors, for instance, results in remarkable morphological and physiological changes in bipolar cells and horizontal cells. Retinal ganglion cells (RGCs), which send visual information to the brain, are relatively preserved, but(More)
Gaining mechanistic insight into interaction between causative factors of complex multifactorial diseases involving photoreceptor damage might aid in devising effective therapies. Oxidative stress is one of the potential unifying mechanisms for interplay between genetic and environmental factors that contribute to photoreceptor pathology. Interestingly, the(More)
Purpose Photoreceptor degeneration in the retina is a major cause of blindness in humans. Elucidating mechanisms of degenerative and neuroprotective pathways in photoreceptors should afford identification and development of therapeutic strategies. Methods We used mouse genetic models and improved methods for retinal explant cultures. Retinas were(More)
  • 1