Saumya Jain

Learn More
Proteins regulate gene expression by controlling mRNA biogenesis, localization, translation and decay. Identifying the composition, diversity and function of mRNA-protein complexes (mRNPs) is essential to understanding these processes. In a global survey of Saccharomyces cerevisiae mRNA-binding proteins, we identified 120 proteins that cross-link to mRNA,(More)
Stress granules are mRNA-protein granules that form when translation initiation is limited, and they are related to pathological granules in various neurodegenerative diseases. Super-resolution microscopy reveals stable substructures, referred to as cores, within stress granules that can be purified. Proteomic analysis of stress granule cores reveals a(More)
Cellular bodies such as P bodies and PML nuclear bodies (PML NBs) appear to be phase-separated liquids organized by multivalent interactions among proteins and RNA molecules. Although many components of various cellular bodies are known, general principles that define body composition are lacking. We modeled cellular bodies using several engineered(More)
Stress granules are non-membrane bound RNA-protein (RNP) assemblies that form when translation initiation is limited and contain a biphasic structure with stable core structures surrounded by a less concentrated shell. The order of assembly and disassembly of these two structures remains unknown. Time course analysis of granule assembly suggests that core(More)
Stress granules are dynamic, conserved RNA-protein (RNP) assemblies that form when translation is limiting; and are related to pathological aggregates in degenerative disease. Mammalian stress granules are comprised of two structures - an unstable shell and more stable cores. Herein we describe methodology for isolation of stress granule cores from both(More)
  • 1