Learn More
The crystal structure of the NgoMIV restriction endonuclease in complex with cleaved DNA has been determined at 1.6 A resolution. The crystallographic asymmetric unit contains a protein tetramer and two DNA molecules cleaved at their recognition sites. This is the first structure of a tetrameric restriction enzyme-DNA complex. In the tetramer, two primary(More)
Crystal structures of Type II restriction endonucleases demonstrate a conserved common core and active site residues but diverse structural elements involved in DNA sequence discrimination. Comparative structural analysis of restriction enzymes recognizing the same nucleotide sequence might therefore contribute to our understanding of the structural(More)
It is thought that most of the type II restriction endonucleases interact with DNA as homodimers. Cfr10I is a typical type II restriction enzyme that recognises the 5'-Pu decreases CCGGPy sequence and cleaves it as indicated by the arrow. Gel-filtration and analytical ultracentrifugation data presented here indicate that Cfr10I is a homotetramer in(More)
The X-ray crystal structure of Citrobacter freundii restriction endonuclease Cfr10I has been determined at a resolution of 2.15 A by multiple isomorphous replacement methods and refined to an R-factor of 19.64%. The structure of Cfr10I represents the first structure of a restriction endonuclease recognizing a degenerated nucleotide sequence. Structural(More)
The Crystallography Open Database (COD), which is a project that aims to gather all available inorganic, metal–organic and small organic molecule structural data in one database, is described. The database adopts an open-access model. The COD currently contains 80 000 entries in crystallographic information file format, with nearly full coverage of the(More)
DNA base flipping is an important mechanism in molecular enzymology, but its study is limited by the lack of an accessible and reliable diagnostic technique. A series of crystalline complexes of a DNA methyltransferase, M.HhaI, and its cognate DNA, in which a fluorescent nucleobase analogue, 2-aminopurine (AP), occupies defined positions with respect the(More)
The MunI restriction enzyme recognizes the palindromic hexanucleotide sequence C/AATTG (the '/' indicates the cleavage site). The crystal structure of its active site mutant D83A bound to cognate DNA has been determined at 1.7 A resolution. Base-specific contacts between MunI and DNA occur exclusively in the major groove. While DNA-binding sites of most(More)
DNA cytosine methylation is a widespread epigenetic mark. Biological effects of DNA methylation are mediated by the proteins that preferentially bind to 5-methylcytosine (5mC) in different sequence contexts. Until now two different structural mechanisms have been established for 5mC recognition in eukaryotes; however, it is still unknown how discrimination(More)
UNLABELLED Fabry's disease is an X-linked inborn error of glycosphingolipid metabolism caused by a deficiency of the lysosomal hydrolase alpha-galactosidase A. Due to deficiency of this enzyme activity, a progressive lysosomal accumulation of glycosphingolipids, in particular globotriaosylceramide, takes place within endothelial cells and cells of the(More)
Among all restriction endonucleases known to date, BfiI is unique in cleaving DNA in the absence of metal ions. BfiI represents a different evolutionary lineage of restriction enzymes, as shown by its crystal structure at 1.9-A resolution. The protein consists of two structural domains. The N-terminal catalytic domain is similar to Nuc, an EDTA-resistant(More)