Learn More
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land(More)
A chimeric gene composed of the coding sequence of the ble gene from Streptoalloteichus hindustanus fused to the 5' and 3' untranslated regions of the Chlamydomonas reinhardtii nuclear gene RBCS2 has been constructed. Introduction of this chimeric gene into the nuclear genome of C. reinhardtii by co-transformation with the ARG7 marker yields Arg+(More)
The argininosuccinate lyase (ASL) gene of Chlamydomonas reinhardtii has been cloned using four oligonucleotide probes corresponding to highly conserved regions of the ASL polypeptide sequence. The identity of the gene was confirmed by partial sequencing. It is unique, contains several introns and spans a region less than 7.8 kb that includes highly(More)
We are using a molecular-genetic approach to investigate the role of nuclear genes in the biogenesis of the electron transfer complexes of mitochondria and chloroplasts. Our analysis of nuclear mutants of the green alga Chlamydomonas that are defective in respiration or photosynthesis has led to the identification of genes encoding factors required for the(More)
The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date.(More)
Reverse-genetic studies of chloroplast genes in the green alga Chlamydomonas reinhardtii have been hampered by the paucity of suitable selectable markers for chloroplast transformation. We have constructed a series of vectors for the targeted insertion and expression of foreign genes in the Chlamydomonas chloroplast genome. Using these vectors we have(More)
Cytochrome c(6A) is a dithio-cytochrome recently discovered in land plants and green algae, and believed to be derived from the well-known cytochrome c(6). The function of cytochrome c(6A) is unclear. We propose that it catalyses the formation of disulphide bridges in thylakoid lumen proteins in a single-step disulphide exchange reaction, with subsequent(More)
The availability of routine techniques for the genetic manipulation of the chloroplast genome of Chlamydomonas reinhardtii has allowed a plethora of reverse-genetic studies of chloroplast biology using this alga as a model organism. These studies range from fundamental investigations of chloroplast gene function and regulation to sophisticated metabolic(More)
We have investigated the importance of carotenoids on the accumulation and function of the photosynthetic apparatus using a mutant of the green alga Chlamydomonas reinhardtii lacking carotenoids. The FN68 mutant is deficient in phytoene synthase, the first enzyme of the carotenoid biosynthesis pathway, and therefore is unable to synthesize any carotenes and(More)
BACKGROUND The utilization of biomass from microalgae for biofuel production is one of the key elements for the development of a sustainable and secure energy supply. Among the different microalgae, Chlorella species are of interest because of their high productivity, high lipid content, and resistance to the high light conditions typical of(More)