Saul A. Teukolsky

Learn More
Michael Boyle, Duncan A. Brown, Lawrence E. Kidder, Abdul H. Mroué, Harald P. Pfeiffer, Mark A. Scheel, Gregory B. Cook, and Saul A. Teukolsky Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, California 91125, USA LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA Department of Physics,(More)
We present a code for solving the coupled Einstein-hydrodynamics equations to evolve relativistic, selfgravitating fluids. The Einstein field equations are solved in generalized harmonic coordinates on one grid using pseudospectral methods, while the fluids are evolved on another grid using shock-capturing finite difference or finite volume techniques. We(More)
Motivated by the need to control the exponential growth of constraint violations in numerical solutions of the Einstein evolution equations, two methods are studied here for controlling this growth in general hyperbolic evolution systems. The first method adjusts the evolution equations dynamically, by adding multiples of the constraints, in a way designed(More)
Francois Foucart, Matthew D. Duez, Lawrence E. Kidder, and Saul A. Teukolsky Center for Radiophysics and Space Research, Cornell University, Ithaca, New York, 14853, USA Department of Physics & Astronomy, Washington State University, Pullman, Washington 99164, USA Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California(More)
A. M. Abrahams,1,2,3 L. Rezzolla,1 M. E. Rupright,3 A. Anderson,3 P. Anninos,1 T. W. Baumgarte,1 N. T. Bishop,4 S. R. Brandt,1 J. C. Browne,5 K. Camarda,6 M. W. Choptuik,5 G. B. Cook,7 R. R. Correll,5 C. R. Evans,3 L. S. Finn,8 G. C. Fox,9 R. Gómez,10 T. Haupt,9 M. F. Huq,5 L. E. Kidder,8 S. A. Klasky,9 P. Laguna,6 W. Landry,7 L. Lehner,10 J. Lenaghan,3 R.(More)
Locating apparent horizons is not only important for a complete understanding of numerically generated spacetimes, but it may also be a crucial component of the technique for evolving blackhole spacetimes accurately. A scheme proposed by Libson et al., based on expanding the location of the apparent horizon in terms of symmetric trace-free tensors, seems(More)
The Numerical-Relativity–Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates(More)