Satyabrata Kar

Learn More
Extracellular accumulation of beta-amyloid peptide (Abeta) has been linked to the development of Alzheimer disease. The importance of intraneuronal Abeta has been recognized more recently. Although considerable evidence indicates that extracellular Abeta contributes to the intracellular pool of Abeta, the mechanisms involved in Abeta uptake by neurons are(More)
Alzheimer's disease is an age-related neurodegenerative disorder that is characterized by a progressive loss of memory and deterioration of higher cognitive functions. The brain of an individual with Alzheimer's disease exhibits extracellular plaques of aggregated beta-amyloid protein (Abeta), intracellular neurofibrillary tangles that contain(More)
The Forkhead family transcription factor FKHRL1, a mammalian homolog of DAF16 in the nematode Caenorhabditis elegans, is an inducer of apoptosis in its unphosphorylated form and was recently reported as a substrate of Akt kinases. Insulin-like growth factor (IGF-1) is a potent stimulant of Akt kinase, leading to inhibition of the apoptotic pathway. In this(More)
In the preceding paper, we showed that GSK3beta phosphorylates tau at S(202), T(231), S(396), and S(400) in vivo. Phosphorylation of S(202) occurs without priming. Phosphorylation of T(231), on the other hand, requires priming phosphorylation of S(235). Similarly, priming phosphorylation of S(404) is essential for the sequential phosphorylation of S(400)(More)
Insulin-like growth factors I and II (IGF I and IGF II) and insulin itself, which are structurally related polypeptides, play an important role in regulating brain growth and development as well as in the maintenance of its normal functions during adulthood. In order to provide a substrate for the better understanding of the roles of these growth factors,(More)
Insulin-like growth factor-I (IGF-I) is a pleiotropic protein that acts on many tissues and organs. As it is one of the major trophic factors in the circulation, its actions in peripheral tissues are well established. It has been used for the treatment of several diseases, including growth deficiency, osteoporosis, catabolic disorders and diabetes. Recent(More)
Tolerance to morphine analgesia is believed to result from a neuronal adaptation produced by continuous drug administration, although the precise mechanisms involved have yet to be established. Recently, we reported selective alterations in rat spinal calcitonin gene-related peptide (CGRP) markers in morphine-tolerant animals. In fact, increases in(More)
The characteristic pathological features of the postmortem brain of Alzheimer's disease (AD) patients include, among other features, the presence of neuritic plaques composed of amyloid beta-peptide (A beta) and the loss of basal forebrain cholinergic neurons, which innervate the hippocampus and the cortex. Studies of the pathological changes that(More)
The deposition of beta-amyloid protein (A beta), a 39-43 amino acid peptide, in the brain and a loss of cholinergic neurons in the basal forebrain are pathological hallmarks of Alzheimer's disease (AD). Seaweeds consumed in Asia contain Fucoidan, a sulfated polysaccharide. Fucoidan has been known to exhibit various biological actions, such as an(More)
A new regime is described for radiation pressure acceleration of a thin foil by an intense laser beam of above 1020 W cm. Highly monoenergetic proton beams extending to giga-electron-volt energies can be produced with very high efficiency using circularly polarized light. The proton beams have a very small divergence angle (<4). This new method allows the(More)