Satya Sree N. Kolar

Learn More
Antimicrobial peptides (AMPs), such as β-defensins and cathelicidins, are essential components of innate and adaptive immunity owing to their extensive multifunctional activities. However, their role in fungal infection in vivo remains elusive. In this study, we investigated the protective effect of murine β-defensin 3 (mBD3), mBD4, and the cathelicidin(More)
BACKGROUND The combination of fish oil-derived docosahexaenoic acid (DHA) (22:6; omega 3 [n-3]) and butyrate (4:0), a fiber fermentation product, synergized to enhance colonocyte apoptosis by inducing a p53-independent, oxidation sensitive, mitochondrial Ca(2+) -dependent (intrinsic) pathway. METHODS In this study, the authors probed the specificity of(More)
Butyrate, a short-chain fatty acid fiber fermentation product, induces colonocyte apoptosis in part via a Fas-mediated (extrinsic) pathway. In previous studies, we demonstrated that docosahexaenoic acid (DHA, 22:6(Delta4,7,10,13,16,19)) enhances the effect of butyrate by increasing mitochondrial lipid oxidation and mitochondrial Ca(2+)-dependent apoptosis(More)
Pseudomonas aeruginosa is the primary bacterial pathogen causing contact lens related keratitis. Available ophthalmic agents have reduced efficacy and antimicrobial peptides (AMPs) hold promise as future antibiotics. Here we investigated the in vitro and in vivo anti-Pseudomonal activity of esculentin-1a(1-21)NH2, derived from a frog skin AMP. The data(More)
The biological properties of polyunsaturated fatty acid (PUFA) classes have been the source of much contention. For example, n-3 PUFA are chemoprotective, whereas n-6 PUFA may promote tumor development. Since dietary components can have combinatorial effects, we further examined the apoptotic properties of n-3 or n-6 fatty acids when combined with different(More)
Docosahexaenoic acid (DHA, 22:6 n-3) from fish oil, and butyrate, a fiber fermentation product, work coordinately to protect against colon tumorigenesis in part by inducing apoptosis. We have recently demonstrated that dietary DHA is incorporated into mitochondrial membrane phospholipids, thereby enhancing oxidative stress induced by butyrate metabolism. In(More)
Kolar SS, Barhoumi R, Callaway ES, Fan Y-Y, Wang N, Lupton JR, Chapkin RS. Synergy between docosahexaenoic acid and butyrate elicits p53-independent apoptosis via mitochondrial Ca accumulation in colonocytes. Am J Physiol Gastrointest Liver Physiol 293: G935–G943, 2007. First published August 23, 2007; doi:10.1152/ajpgi.00312.2007.—Butyrate, a short-chain(More)
We have previously shown that butyrate, a short-chain fatty acid fiber fermentation product, induces colonocyte apoptosis via a nonmitochondrial, Fas-mediated, extrinsic pathway. Interestingly, fermentable fiber when combined with fish oil containing docosahexaenoic acid (DHA, 22:6n-3) exhibits an enhanced ability to induce apoptosis and protect against(More)
The eye and its associated tissues including the lacrimal system and lids have evolved several defence mechanisms to prevent microbial invasion. Included among this armory are several host-defence peptides. These multifunctional molecules are being studied not only for their endogenous antimicrobial properties but also for their potential therapeutic(More)
We have previously shown that butyrate, a short-chain fatty acid fiber fermentation product, induces colonocyte apoptosis via a nonmitochondrial, Fas-mediated, extrinsic pathway. Interestingly, fermentable fiber when combined with fish oil containing docosahexaenoic acid (DHA, 22:6n-3) exhibits an enhanced ability to induce apoptosis and protect against(More)