Learn More
How cells utilize intracellular spatial features to optimize their signaling characteristics is still not clearly understood. The physical distance between the cell-surface receptor and the gene expression machinery, fast reactions, and slow protein diffusion coefficients are some of the properties that contribute to their intricacy. This article reviews(More)
UNLABELLED Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution.(More)
Protein sequences classification is an important problem in molecular biology, and it has long been a goal for scientists and researchers. This paper describes an approach to data-driven discovery of sequence motif-based models using neural network classifier based on Dempster-Shafer Theory for assigning protein sequences to functional families. A training(More)
BACKGROUND Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented(More)
The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to(More)
Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the(More)
Protein secondary structure prediction is a problem related to structural bioinformatics which deals with the prediction and analysis of macromolecules i.e. DNA, RNA and protein. It is an important step towards elucidating its three dimensional structure, as well as its function. Secondary structure of a protein can be predicted from its primary structures(More)
Particle Swarm Optimization (PSO) has achieved remarkable attentions for its capability to solve diverse global optimization problems. However, this method also shows several limitations. PSO easily trapped in the global optimum and often required vast computational cost when solving high dimensional problems. Therefore, we propose some modifications to(More)