Satoshi Okano

Learn More
DNA single-strand breaks (SSB) are one of the most frequent DNA lesions produced by reactive oxygen species and during DNA metabolism, but the analysis of cellular responses to SSB remains difficult due to the lack of an experimental method to produce SSB alone in cells. By using human cells expressing a foreign UV damage endonuclease (UVDE) and irradiating(More)
Oxidative DNA damage causes blocks and errors in transcription and replication, leading to cell death and genomic instability. Although repair mechanisms of the damage have been extensively analyzed in vitro, the actual in vivo repair processes remain largely unknown. Here, by irradiation with an UVA laser through a microscope lens, we have conditionally(More)
In the widely accepted molecular model underlying mammalian circadian rhythm, cryptochrome proteins (CRYs) play indispensable roles as inhibitive components of the CLOCK-BMAL1-mediated transcriptional-translational negative feedback loop. In order to clarify yet uncovered aspects of mammalian CRYs in vivo, we generated transgenic (Tg) mice ubiquitously(More)
The first step of heme biosynthesis in animals is catalyzed by 5-aminolevulinate synthase (ALAS), which controls heme supply in various tissues. To clarify the roles that the nonspecific isoform of ALAS (ALAS-N) plays in vivo, we prepared a green fluorescent protein (GFP) knock-in mouse line in which the Alas1 gene (encoding ALAS-N) is replaced with a gfp(More)
DNA single-strand breaks (SSBs) are the most frequent lesions caused by oxidative DNA damage. They disrupt DNA replication, give rise to double-strand breaks and lead to cell death and genomic instability. It has been shown that the XRCC1 protein plays a key role in SSBs repair. We have recently shown in living human cells that XRCC1 accumulates at SSBs in(More)
A deficiency of superoxide dismutase 1 (SOD1) or peroxiredoxin (Prx) 2 causes anemia in mice due to elevated oxidative stress. In the current study, we investigated whether intrinsic oxidative stress caused by a SOD1 deficiency affected the redox status of Prx2 and other isoforms in red blood cells (RBCs) and several organs of mice. We observed a marked(More)
In vivo oxygen measurement is the key to understanding how biological systems dynamically adapt to reductions in oxygen supply. High spatial resolution oxygen imaging is of particular importance because recent studies address the significance of within-tissue and within-cell heterogeneities in oxygen concentration in health and disease. Here, we report a(More)
Molecular defects in erythroid 5-aminolevulinate synthase (ALAS-E), the first enzyme in the heme biosynthetic pathway, cause X-linked sideroblastic anemia (XLSA). However, ring sideroblasts, the hallmark of XLSA, were not found in ALAS-E-deficient mouse embryos, indicating that simple ALAS-E-deficiency is not sufficient for ring sideroblast formation. To(More)
BACKGROUND An earlier report described that transgenic mice ubiquitously expressing cryptochrome1 (CRY1) with a mutation in cystein414 (CRY1-AP Tg mice) display diabetes mellitus in addition to anomalous circadian behaviours. This study examined characteristic aspects of symptoms to clarify the diabetes type and pathogenesis. MATERIALS AND METHODS The(More)
AIMS/INTRODUCTION In earlier reports, we described that transgenic (Tg) mice ubiquitously expressing cryptochrome1 (CRY1) with a mutation in cysteine414 (CRY1-AP Tg mice) show an early-onset insulin-secretory defect of diabetes mellitus resembling human maturity-onset diabetes of the young (MODY). To clarify the yet undiscovered molecular pathogenesis of(More)