Learn More
To understand how living organisms maintain their lives, it is important to regard the living organisms as nonequilibrium open systems, since organisms live through the dissipation of the chemical energy of the nutrition. So far, a number of studies on physics under nonequilibrium open conditions have been performed both experimentally and theoretically.(More)
The synchronized self-motion of two camphor boats on polygonal water chambers was investigated. The two boats synchronously moved depending on the number of corners in the polygon by changing the distance between the two boats through the corners. We regard the self-motion of a camphor boat as an oscillator; i.e., one cycle on the polygonal chamber(More)
The three-dimensional ultrastructure of the TMJ disk of two normal rhesus monkeys was investigated using the SEM. The upper and under surface of the TMJ disk consists of a close network of delicate collagen fibrils. On the undersurface, they have an undulating configuration, with the elevations running in one direction. On the upper surface, irregular and(More)
The development of self-propelled motors that mimic biological motors is an important challenge for the transport of either themselves or some material in a small space, since biological systems exhibit high autonomy and various types of responses, such as taxis and swarming. In this perspective, we review non-living systems that behave like living matter.(More)
Quantitative information on the parameters associated with self-propelled objects would enhance the potential of this research field; for example, finding a realistic way to develop a functional self-propelled object and quantitative understanding of the mechanism of self-motion. We therefore estimated five main parameters, including the driving force, of a(More)
We investigate the collective motion of symmetric self-propelled objects that are driven by a difference in the surface tension. The objects move around an annular water channel spontaneously and interact through the camphor layer that develops on the water surface. We found that two collective motion modes, discrete and continuous density waves, are(More)
A self-propelled motor driven by the enzymatic reaction of catalase adsorbed onto a filter paper floating on an aqueous solution of H2 O2 was used to study nonlinear behavior in the motor's motion. An increase in the concentration of H2 O2 resulted in a change from no motion to irregular oscillatory motion, periodic oscillatory motion, and continuous(More)
Self-motion of a camphor disk rotating inside a water chamber composed of two half-disks was investigated. The half-disks were joined along their diameter segments, and the distance between their midpoints (ds) was considered as the control parameter. Various types of camphor disk motions were observed depending on ds. When ds = 0, the chamber had a(More)
A self-propelled camphor boat on water was investigated from the viewpoint of characteristic features of motion and mode-bifurcation depending on the diffusion length of camphor molecules. When a camphor disk was connected to the bottom of a larger plastic plate and then was placed on water, either oscillatory motion (repetition between rest and motion) or(More)
Mode selection and bifurcation of a synchronized motion involving two symmetric self-propelled objects in a periodic one-dimensional domain were investigated numerically and experimentally by using camphor disks placed on an annular water channel. Newton's equation of motion for each camphor disk, whose driving force was the difference in surface tension,(More)