Satoshi Mitsuhashi

Learn More
Classical whole-cell mutagenesis has achieved great success in development of many industrial fermentation strains, but has the serious disadvantage of accumulation of uncharacterized secondary mutations that are detrimental to their performance. In the post-genomic era, a novel methodology which avoids this drawback presents itself. This "genome-based(More)
Toward the creation of a robust and efficient producer of L-arginine and L-citrulline (arginine/citrulline), we have performed reengineering of a Corynebacterium glutamicum strain by using genetic information of three classical producers. Sequence analysis of their arg operons identified three point mutations (argR123, argG92(up), and argG45) in one(More)
Carbonic anhydrase catalyzes the interconversion of CO2 and bicarbonate. We focused on this enzyme in the amino acid-producing organism Corynebacterium glutamicum in order to assess the availability of bicarbonate for carboxylation reactions essential to growth and for those required for l-lysine overproduction. A whole-genome sequence revealed two genes(More)
A sufficient supply of NADPH is a critical factor in l-lysine production by Corynebacterium glutamicum. Endogenous NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) of C. glutamicum was replaced with nonphosphorylating NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) of Streptococcus mutans, which catalyzes the reaction of(More)
Toward more efficient L-lysine production, we have been challenging genome-based strain breeding by the approach of assembling only relevant mutations in a single wild-type background. Following the creation of a new L-lysine producer Corynebacterium glutamicum AHP-3 that carried three useful mutations (lysC311, hom59, and pyc458) on the relevant downstream(More)
Based on the progress in genomics, we have developed a novel approach that employs genomic information to generate an efficient amino acid producer. A comparative genomic analysis of an industrial l-lysine producer with its natural ancestor identified a variety of mutations in genes associated with l-lysine biosynthesis. Among these mutations, we identified(More)
We have recently developed a new l-lysine-producing mutant of Corynebacterium glutamicum by "genome breeding" consisting of characterization and reconstitution of a mutation set essential for high-level production. The strain AHP-3 was examined for l-lysine fermentation on glucose at temperatures above 35°C, at which no examples of efficient l-lysine(More)
Toward the elucidation of advanced mechanisms of L-lysine production by Corynebacterium glutamicum, a highly developed industrial strain B-6 was analyzed from the viewpoint of gene expression. Northern blot analysis showed that the lysC gene encoding aspartokinase, the key enzyme of L-lysine biosynthesis, was up-regulated by several folds in strain B-6,(More)
Genomic analysis of a classically derived L-lysine-producing mutant, Corynebacterium glutamicum B-6, identified a nonsense mutation in the mqo gene, which encodes malate:quinone oxidoreductase (MQO). The effect of mqo disruption on L-lysine production was investigated in a defined L-lysine producer, C. glutamicum AHP-3, showing approximately 18% increased(More)
Corynebacterium glutamicum uses the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) to uptake and phosphorylate glucose; no other route has yet been identified. Disruption of the ptsH gene in wild-type C. glutamicum resulted, as expected, in a phenotype exhibiting little growth on any of the PTS sugars: glucose, fructose, and sucrose.(More)