Learn More
Low-intensity resistance exercise training combined with blood flow restriction (REFR) increases muscle size and strength as much as conventional resistance exercise with high loads. However, the cellular mechanism(s) underlying the hypertrophy and strength gains induced by REFR are unknown. We have recently shown that both the mammalian target of rapamycin(More)
Resistance exercise is a potent stimulator of muscle protein synthesis and muscle cell growth, with the increase in protein synthesis being detected within 2-3 h post-exercise and remaining elevated for up to 48 h. However, during exercise, muscle protein synthesis is inhibited. An increase in AMP-activated protein kinase (AMPK) activity has recently been(More)
We recently showed that resistance exercise and ingestion of essential amino acids with carbohydrate (EAA+CHO) can independently stimulate mammalian target of rapamycin (mTOR) signaling and muscle protein synthesis in humans. Providing an EAA+CHO solution postexercise can further increase muscle protein synthesis. Therefore, we hypothesized that enhanced(More)
Concurrent improvements in aerobic capacity and muscle hypertrophy in response to a single mode of training have not been reported. We examined the effects of low-intensity cycle exercise training with and without blood flow restriction (BFR) on muscle size and maximum oxygen uptake (VO2max). A group of 19 young men (mean age ± SD: 23.0 ± 1.7 years) were(More)
The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a(More)
INTRODUCTION Blood flow restriction in combination with low-intensity resistance exercise (REFR) increases skeletal muscle size to a similar extent as compared with traditional high-intensity resistance exercise training. However, there are limited data describing the molecular adaptations that occur after REFR. PURPOSE To determine whether hypoxia(More)
Insulin promotes muscle anabolism, but it is still unclear whether it stimulates muscle protein synthesis in humans. We hypothesized that insulin can increase muscle protein synthesis only if it increases muscle amino acid availability. We measured muscle protein and amino acid metabolism using stable-isotope methodologies in 19 young healthy subjects at(More)
A reduced response of older skeletal muscle to anabolic stimuli may contribute to the development of sarcopenia. We hypothesized that muscle proteins are resistant to the anabolic action of insulin in the elderly. We examined the effects of hyperinsulinemia on muscle protein metabolism in young (25+/-2 year) and older (68+/-1 year) healthy subjects using(More)
Muscle protein metabolism is resistant to insulin's anabolic effect in healthy older subjects. This is associated with reduced insulin vasodilation. We hypothesized that aerobic exercise restores muscle protein anabolism in response to insulin by improving vasodilation in older subjects. We measured blood flow, endothelin-1, Akt/mammalian target of(More)
The effect of low-intensity resistance exercise with external limb compression (100 [EC100] and 160 [EC160] mm Hg) on limb blood flow and venous blood gas-metabolite response was investigated and compared with that of high-intensity resistance exercise (no external compression). Unilateral elbow flexion muscle contractions were performed at 20% (75(More)