Satoru Usami

Learn More
RATIONALE Atrial and brain natriuretic peptides (ANP and BNP, respectively) exert antihypertrophic effects in the heart via their common receptor, guanylyl cyclase (GC)-A, which catalyzes the synthesis of cGMP, leading to activation of protein kinase (PK)G. Still, much of the network of molecular mediators via which ANP/BNP-GC-A signaling inhibit cardiac(More)
Reactivation of the fetal cardiac gene program is a characteristic feature of hypertrophied and failing hearts that correlates with impaired cardiac function and poor prognosis. However, the mechanism governing the reversible expression of fetal cardiac genes remains unresolved. Here we show that neuron-restrictive silencer factor (NRSF), a transcriptional(More)
Myocardin-related transcription factor (MRTF)-A is a Rho signalling-responsive co-activator of serum response factor (SRF). Here, we show that induction of MRTF-A expression is key to pathological vascular remodelling. MRTF-A expression was significantly higher in the wire-injured femoral arteries of wild-type mice and in the atherosclerotic aortic tissues(More)
We recently reported that a transcriptional repressor, neuron-restrictive silencer factor (NRSF), represses expression of fetal cardiac genes, including atrial and brain natriuretic peptide (ANP and BNP), by recruiting class I histone deacetylase (HDAC) and that attenuation of NRSF-mediated repression contributes to the reactivation of fetal gene expression(More)
BACKGROUND Recent clinical trials have shown that systemic infusion of nesiritide, a recombinant human brain natriuretic peptide (BNP), improves hemodynamic parameters in acutely decompensated hearts. This suggests that BNP exerts a direct cardioprotective effect and might thus be a useful therapeutic agent with which to treat acute myocardial infarction(More)
Subjecting cardiomyocytes to mechanical stress or neurohumoral stimulation causes cardiac hypertrophy characterized in part by reactivation of the fetal cardiac gene program. Here we demonstrate a new common mechanism by which these stimuli are transduced to a signal activating the hypertrophic gene program. Mechanically stretching cardiomyocytes induced(More)
Pyruvate, orthophosphate dikinase (PPDK) is a key enzyme in the C4 photosynthetic pathway of maize. To improve the cold tolerance of the enzyme in maize, we designed two genomic sequence-based constructs in which the carboxy-terminal region of the enzyme was modified to mimic the amino acid sequence of the cold-tolerant PPDK of Flaveria brownii(More)
Tamavidin 2 is a fungal avidin-like protein that binds biotin with high affinity and is highly produced in soluble form in Escherichia coli. By contrast, widely used biotin-binding proteins avidin and streptavidin are rarely produced in soluble form in E. coli. In this study, we describe an efficient system for one-step purification and immobilization of(More)
gp130-dependent signaling is known to play a critical role in the onset of heart failure. In that regard, cardiotrophin-1 (CT-1) activates several signaling pathways via gp130, and induces hypertrophy in neonatal rat cardiomyocytes. Among the mediators activated by CT-1, STAT3 is thought to be important for induction of cell hypertrophy, though its precise(More)