Satoru Shimomura

Learn More
The field of host-guest complexation is intensely attractive from diverse perspectives, including materials science, chemistry and biology. The uptake and encapsulation of guest species by host frameworks are being investigated for a wide variety of purposes, including separation and storage using zeolites, and recognition and sensing by enzymes in(More)
Porous coordination polymers (PCPs), which are microporous materials, have been given much attention from both scientific and commercial aspects regarding their application to gas storage, gas separation and catalytic reaction because of the regularity of their pore shape and pore size, accompanied with the functionality. Moreover, in recent years, flexible(More)
Chemosensors detect a single target molecule from among several molecules, but cannot differentiate targets from one another. In this study, we report a molecular decoding strategy in which a single host domain accommodates a class of molecules and distinguishes between them with a corresponding readout. We synthesized the decoding host by embedding(More)
Porous coordination polymers are materials formed from metal ions that are bridged together by organic linkers and that can combine two seemingly contradictory properties-crystallinity and flexibility. Porous coordination polymers can therefore create highly regular yet dynamic nanoporous domains that are particularly promising for sorption applications.(More)
MOF on MOF: Core-shell porous coordination polymer (PCP) crystals are fabricated at the single-crystal level by epitaxial growth in solution. Synchrotron X-ray diffraction measurements unveiled the structural relationship between the shell crystal and the core crystal, where in-plane rotational epitaxial growth compensates the difference in lattice constant.
A flexible porous coordination polymer with interdigitated structure (CID-3) has been synthesized whose pore size and structural flexibility are suitable for CO(2) capture, providing us with highly selective adsorption properties of CO(2) from a ternary O(2), N(2) and CO(2) mixture.
A three-dimensional coordination framework constructed with 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) diainon has been synthesized and structurally characterized. This open framework possessing a highly electron-rich surface has an optical sensing cavity for several aromatics with crystal-to-crystal transformation and strong accommodation, which are based(More)
A series of TCNQ-dianion-based porous coordination polymers [M(TCNQ)bpy] (M = Fe, Zn, Mn, Co, Cd) have been synthesized and characterized. The synthesis reactions of these compounds are promoted by the addition of ascorbic acid, which is the key to obtaining a high yield. They form almost identical three-dimensional pillared layer structures with the M-TCNQ(More)
  • 1