Learn More
SUMMARY We have implemented k-means clustering, hierarchical clustering and self-organizing maps in a single multipurpose open-source library of C routines, callable from other C and C++ programs. Using this library, we have created an improved version of Michael Eisen's well-known Cluster program for Windows, Mac OS X and Linux/Unix. In addition, we(More)
Liang, Fuhrman and Somogyi (PSB98, 18-29, 1998) have described an algorithm for inferring genetic network architectures from state transition tables which correspond to time series of gene expression patterns, using the Boolean network model. Their results of computational experiments suggested that a small number of state transition (INPUT/OUTPUT) pairs(More)
MOTIVATION The prediction of localization sites of various proteins is an important and challenging problem in the field of molecular biology. TargetP, by Emanuelsson et al. (J. Mol. Biol., 300, 1005-1016, 2000) is a neural network based system which is currently the best predictor in the literature for N-terminal sorting signals. One drawback of neural(More)
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. We sequenced and analyzed the whole genomes of 27 HCCs, 25 of which were associated with hepatitis B or C virus infections, including two sets of multicentric tumors. Although no common somatic mutations were identified in the multicentric tumor pairs, their(More)
The following two matters should be resolved in order for biosimulation tools to be accepted by users in biology/medicine: (1) remove issues which are irrelevant to biological importance, and (2) allow users to represent biopathways intuitively and understand/manage easily the details of representation and simulation mechanism. From these criteria, we(More)
Grade II and III gliomas are generally slowly progressing brain cancers, many of which eventually transform into more aggressive tumors. Despite recent findings of frequent mutations in IDH1 and other genes, knowledge about their pathogenesis is still incomplete. Here, combining two large sets of high-throughput sequencing data, we delineate the entire(More)
Myelodysplastic syndromes and related disorders (myelodysplasia) are a heterogeneous group of myeloid neoplasms showing deregulated blood cell production with evidence of myeloid dysplasia and a predisposition to acute myeloid leukaemia, whose pathogenesis is only incompletely understood. Here we report whole-exome sequencing of 29 myelodysplasia specimens,(More)
We propose a dynamic Bayesian network and nonparametric regression model for constructing a gene network from time series microarray gene expression data. The proposed method can overcome a shortcoming of the Bayesian network model in the sense of the construction of cyclic regulations. The proposed method can analyze the microarray data as a continuous(More)
Clear-cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer and its molecular pathogenesis is incompletely understood. Here we report an integrated molecular study of ccRCC in which ≥100 ccRCC cases were fully analyzed by whole-genome and/or whole-exome and RNA sequencing as well as by array-based gene expression, copy number and/or(More)
We propose a statistical method for estimating a gene network based on Bayesian networks from microarray gene expression data together with biological knowledge including protein-protein interactions, protein-DNA interactions, binding site information, existing literature and so on. Unfortunately, microarray data do not contain enough information for(More)