Learn More
SUMMARY We have implemented k-means clustering, hierarchical clustering and self-organizing maps in a single multipurpose open-source library of C routines, callable from other C and C++ programs. Using this library, we have created an improved version of Michael Eisen's well-known Cluster program for Windows, Mac OS X and Linux/Unix. In addition, we(More)
Liang, Fuhrman and Somogyi (PSB98, 18-29, 1998) have described an algorithm for inferring genetic network architectures from state transition tables which correspond to time series of gene expression patterns, using the Boolean network model. Their results of computational experiments suggested that a small number of state transition (INPUT/OUTPUT) pairs(More)
MOTIVATION The prediction of localization sites of various proteins is an important and challenging problem in the field of molecular biology. TargetP, by Emanuelsson et al. (J. Mol. Biol., 300, 1005-1016, 2000) is a neural network based system which is currently the best predictor in the literature for N-terminal sorting signals. One drawback of neural(More)
The following two matters should be resolved in order for biosimulation tools to be accepted by users in biology/medicine: (1) remove issues which are irrelevant to biological importance, and (2) allow users to represent biopathways intuitively and understand/manage easily the details of representation and simulation mechanism. From these criteria, we(More)
We propose a dynamic Bayesian network and nonparametric regression model for constructing a gene network from time series microarray gene expression data. The proposed method can overcome a shortcoming of the Bayesian network model in the sense of the construction of cyclic regulations. The proposed method can analyze the microarray data as a continuous(More)
In many research projects on modeling and analyzing biological pathways, the Petri net has been recognized as a promising method for representing biological pathways. From the pioneering works by Reddy et al., 1993, and Hofestädt, 1994, that model metabolic pathways by traditional Petri net, several enhanced Petri nets such as colored Petri net, stochastic(More)
We propose a statistical method for estimating a gene network based on Bayesian networks from microarray gene expression data together with biological knowledge including protein-protein interactions, protein-DNA interactions, binding site information, existing literature and so on. Unfortunately, microarray data do not contain enough information for(More)
Genomic Object Net is a software tool for modeling and simulating biopathways which employs the notion of hybrid functional net as its basic architechture. This paper shows how to integrate this basic architecture with XML documents for biopathway representations, simulations, and visualizations for creating a tailor-made simulation environment.
It is important to provide a representation method of gene regulatory networks which realizes the intuitions of biologists while keeping the universality in its computational ability. In this paper, we propose a method to exploit hybrid Petri net (HPN) for representing gene regulatory networks. The HPN is an extension of Petri nets which have been used to(More)