Learn More
Sox2 is expressed at high levels in neuroepithelial stem cells and persists in neural stem/progenitor cells throughout adulthood. We showed previously that the Sox2 regulatory region 2 (SRR2) drives strong expression in these cells. Here we generated transgenic mouse strains with the beta-geo reporter gene under the control of the SRR2 in order to examine(More)
The transcription factor Sox2 is expressed at high levels in neural stem and progenitor cells. Here, we inactivated Sox2 specifically in the developing brain by using Cre-loxP system. Although mutant animals did not survive after birth, analysis of late gestation embryos revealed that loss of Sox2 causes enlargement of the lateral ventricles and a decrease(More)
The transcription factor Sox2 is essential for neural stem cells (NSC) maintenance in the hippocampus and in vitro. The transcription factor Emx2 is also critical for hippocampal development and NSC self-renewal. Searching for 'modifier' genes affecting the Sox2 deficiency phenotype in mouse, we observed that loss of one Emx2 allele substantially increased(More)
Polycomb group (PcG) proteins are essential regulators of hematopoietic stem cells. Recent extensive mutation analyses of the myeloid malignancies have revealed that inactivating somatic mutations in PcG genes such as EZH2 and ASXL1 occur frequently in patients with myelodysplastic disorders including myelodysplastic syndromes (MDSs) and(More)
BACKGROUND The polycomb-group (PcG) proteins function as general regulators of stem cells. We previously reported that retrovirus-mediated overexpression of Bmi1, a gene encoding a core component of polycomb repressive complex (PRC) 1, maintained self-renewing hematopoietic stem cells (HSCs) during long-term culture. However, the effects of overexpression(More)
Tumor-initiating cells (TICs) play a central role in tumor development, metastasis, and recurrence. In the present study, we investigated the effect of disulfiram (DSF), an inhibitor of aldehyde dehydrogenase, toward tumor-initiating hepatocellular carcinoma (HCC) cells. DSF treatment suppressed the anchorage-independent sphere formation of both HCC cells.(More)
Polycomb-group (PcG) proteins form the multiprotein polycomb repressive complexes (PRC) 1 and 2, and function as transcriptional repressors through histone modifications. They maintain the proliferative capacity of hematopoietic stem and progenitor cells by repressing the transcription of tumor suppressor genes, namely Ink4a and Arf, and thus have been(More)
FUSE-binding protein (FBP)-interacting repressor (FIR) is a c-myc transcriptional suppressor. A splice variant of FIR that lacks exon 2 in the transcriptional repressor domain (FIRΔexon2) upregulates c-myc transcription by inactivating wild-type FIR. The ratio of FIRΔexon2/FIR mRNA was increased in human colorectal cancer and hepatocellular carcinoma(More)
Alterations in chromatin structure caused by deregulated epigenetic mechanisms collaborate with underlying genetic lesions to promote cancer. SMARCA4/BRG1, a core component of the SWI/SNF ATP-dependent chromatin-remodelling complex, has been implicated by its mutational spectrum as exerting a tumour-suppressor function in many solid tumours; recently(More)
TIF1β is a transcriptional corepressor that recruits repressive chromatin modifiers to target genes. Its biological function and physiological targets in somatic stem cells remain largely unknown. Here, we show that TIF1β is essential for the maintenance of hematopoietic stem cells (HSCs). Deletion of Tif1b in mice induced active cycling and apoptosis of(More)