Learn More
BACKGROUND Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features(More)
Major depression is a highly prevalent mental disorder and environmental factors have been strongly implicated in its pathophysiology. Clinical studies have demonstrated that stress or depression can lead to atrophy and cell loss in the hippocampus. Studies of animal models of depression have suggested that reduced neurogenesis in the adult hippocampus(More)
BACKGROUND Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3alpha and GSK-3beta. Mice lacking a functional GSK-3alpha gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have(More)
Channel density is a fundamental factor in determining neuronal firing and is primarily regulated during development through transcriptional and translational regulation. In adult rats, striatal cholinergic interneurons have a prominent A-type current and co-express Kv4.1 and Kv4.2 mRNAs. There is evidence that Kv4.2 plays a primary role in producing the(More)
In autosomal recessive early-onset Parkinsonism (PARK2), the pathogenetic process from the loss of function of a ubiquitin ligase parkin to the death of dopamine neurons remains unclear. A dominant hypothesis attributes the neurotoxicity to accumulated substrates that are exempt from parkin-mediated degradation. Parkin substrates include two septins;(More)
We investigated, in a midbrain parasagittal slice preparation of Wistar rats (postnatal day 9-17), the synaptic inhibition of neurons in the pedunculopontine tegmental nucleus (PPN), which was mediated by gamma (gamma)-amino-butyric acid (GABA). Whole-cell patch-clamp recording was used, in combination with a single-cell reverse transcription-polymerase(More)
Forced alternation and left-right discrimination tasks using the T-maze have been widely used to assess working and reference memory, respectively, in rodents. In our laboratory, we evaluated the two types of memory in more than 30 strains of genetically engineered mice using the automated version of this apparatus. Here, we present the modified T-maze(More)
Left-right asymmetry of human brain function has been known for a century, although much of molecular and cellular basis of brain laterality remains to be elusive. Recent studies suggest that hippocampal CA3-CA1 excitatory synapses are asymmetrically arranged, however, the functional implication of the asymmetrical circuitry has not been studied at the(More)
Schnurri-2 (Shn-2), an nuclear factor-κB site-binding protein, tightly binds to the enhancers of major histocompatibility complex class I genes and inflammatory cytokines, which have been shown to harbor common variant single-nucleotide polymorphisms associated with schizophrenia. Although genes related to immunity are implicated in schizophrenia, there has(More)
Core pathologies of Alzheimer's disease (AD) are aggregated amyloid-β peptides (Aβ) and tau, and the latter is also characteristic of diverse neurodegenerative tauopathies. These amyloid lesions provoke microglial activation, and recent neuroimaging technologies have enabled visualization of this response in living brains using radioligands for the(More)