Satish Babu Moparthi

Learn More
MAC30 is highly expressed in several types of tumors including colorectal cancers, however, its clinicopathological and biological significance in colorectal cancers is currently not known. The aim of our study was to investigate MAC30 expression in distant normal mucosa, adjacent normal mucosa, primary tumors and metastases of colorectal cancer, and to(More)
Light/dark regulation of the Calvin cycle in oxygenic photosynthetic organisms involves the formation and dissociation of supramolecular complexes between CP12, a nuclear-encoded chloroplast protein, and the two enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC and phosphoribulokinase (PRK) (EC Despite the high importance of(More)
Single-molecule fluorescence techniques are key for a number of applications, including DNA sequencing, molecular and cell biology and early diagnosis. Unfortunately, observation of single molecules by diffraction-limited optics is restricted to detection volumes in the femtolitre range and requires pico- or nanomolar concentrations, far below the(More)
The commonly accepted dogma of the bacterial GroE chaperonin system entails protein folding mediated by cycles of several ATP-dependent sequential steps where GroEL interacts with the folding client protein. In contrast, we herein report GroES-mediated dynamic remodeling (expansion and compression) of two different protein substrates during folding: the(More)
The single-domain cyclophilin 18 (Cyp18) has long been known to function as a peptidyl-prolyl cis/trans isomerase (PPI) and was proposed by us to also function as a chaperone [Freskgard, P.-O., Bergenhem, N., Jonsson, B.-H., Svensson, M., and Carlsson, U. (1992) Science 258, 466-468]. Later several multidomain PPIs were demonstrated to work as both a(More)
Zero-mode waveguides (ZMWs) can confine light into attoliter volumes, which enables single molecule fluorescence experiments at physiological micromolar concentrations. Of the fluorescence spectroscopy techniques that can be enhanced by ZMWs, Förster resonance energy transfer (FRET) is one of the most widely used in life sciences. Combining zero-mode(More)
The protein folding process is often in vitro rate-limited by slow cis-trans proline isomerization steps. Importantly, the rate of this process in vivo is accelerated by prolyl isomerases (PPIases). The archetypal PPIase is the human cyclophilin 18 (Cyp18 or CypA), and Arg 55 has been demonstrated to play a crucial role when studying short peptide(More)
CP12 is an intrinsically disordered protein playing a key role in the regulation of the Benson-Calvin cycle. Due to the high intrinsic flexibility of CP12, it is essential to consider its structural modulation induced upon binding to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) enzymes. Here, we report for the first(More)
Tailoring the light-matter interaction and the local density of optical states (LDOS) with nanophotonics provides accurate control over the luminescence properties of a single quantum emitter. This paradigm is also highly attractive to enhance the near-field Förster resonance energy transfer (FRET) between two fluorescent emitters. Despite the wide(More)
Förster resonance energy transfer (FRET) is widely applied in chemistry, biology, and nanosciences to assess distances on sub-10 nm scale. Extending the range and applicability of FRET requires enhancement of the fluorescence energy transfer at a spatial scale comparable to the donor-acceptor distances. Plasmonic nanoantennas are ideal to concentrate(More)