Learn More
Learning, planning, and representing knowledge at multiple levels of temporal abstraction are key, longstanding challenges for AI. In this paper we consider how these challenges can be addressed within the mathematical framework of reinforcement learning and Markov decision processes (MDPs). We extend the usual notion of action in this framework to include(More)
Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly represented by its own function approximator, independent of the value(More)
for helping to clarify the relationships between heuristic search and control. We thank Rich Sutton, Chris Watkins, Paul Werbos, and Ron Williams for sharing their fundamental insights into this subject through numerous discussions , and we further thank Rich Sutton for rst making us aware of Korf's research and for his very thoughtful comments on the(More)
We present new algorithms for reinforcement learning and prove that they have polynomial bounds on the resources required to achieve near-optimal return in general Markov decision processes. After observing that the number of actions required to approach the optimal return is lower bounded by the mixing time T of the optimal policy (in the undiscounted(More)
The eligibility trace is one of the basic mechanisms used in reinforcement learning to handle delayed reward. In this paper we introduce a new kind of eligibility trace, the replacing trace, analyze it theoretically, and show that it results in faster, more reliable learning than the conventional trace. Both kinds of trace assign credit to prior events(More)
Multi-agent games are becoming an increasingly prevalent formalism for the study of electronic commerce and auctions. The speed at which transactions can take place and the growing complexity of electronic marketplaces makes the study of computationally simple agents an appealing direction. In this work, we analyze the behavior of agents that incrementally(More)
An important application of reinforcement learning (RL) is to finite-state control problems and one of the most difficult problems in learning for control is balancing the exploration/exploitation tradeoff. Existing theoretical results for RL give very little guidance on reasonable ways to perform exploration. In this paper, we examine the convergence of(More)
We show that states of a dynamical system can be usefully represented by multi-step, action-conditional predictions of future observations. State representations that are grounded in data in this way may be easier to learn, generalize better, and be less dependent on accurate prior models than, for example, POMDP state representations. Building on prior(More)
Psychologists call behavior intrinsically motivated when it is engaged in for its own sake rather than as a step toward solving a specific problem of clear practical value. But what we learn during intrinsically motivated behavior is essential for our development as competent autonomous entities able to efficiently solve a wide range of practical problems(More)