Sathyanarayanan Rajagopal

Learn More
The striatal-enriched phosphatase (STEP) is a component of the NMDA-receptor-mediated excitotoxic signaling pathway, which plays a key role in ischemic brain injury. Using neuronal cultures and a rat model of ischemic stroke, we show that STEP plays an initial role in neuroprotection, during the insult, by disrupting the p38 MAPK pathway. Degradation of(More)
The STriatal-Enriched tyrosine Phosphatase (STEP) is involved in the etiology of several age-associated neurologic disorders linked to oxidative stress and is also known to play a role in neuroprotection by modulating glutamatergic transmission. However, the possible effect of aging on STEP level and activity in the brain is still unclear. In this study,(More)
Excessive release of Zn(2+) in the brain is implicated in the progression of acute brain injuries. Although several signaling cascades have been reported to be involved in Zn(2+)-induced neurotoxicity, a potential contribution of tyrosine phosphatases in this process has not been well explored. Here we show that exposure to high concentrations of Zn(2+) led(More)
Homocysteine, a metabolite of the methionine cycle has been reported to play a role in neurotoxicity through activation of N-methyl-d-aspartate receptors (NMDAR)-mediated signaling pathway. The proposed mechanisms associated with homocysteine-NMDAR-induced neurotoxicity involve a unique signaling pathway that triggers a crosstalk between extracellular(More)
  • 1