Learn More
Alzheimer's disease is characterized by the deposition of amyloid-β peptide in the brain. N-terminal truncation resulting in the formation of AβN3pE and phosphorylation at serine 8 have been reported to modify aggregation properties of amyloid-β. Biochemically, soluble, dispersible, membrane-associated, and insoluble, plaque-associated amyloid-β aggregates(More)
Alzheimer's disease (AD) is the most common form of dementia and associated with progressive deposition of amyloid β-peptides (Aβ) in the brain. Aβ derives by sequential proteolytic processing of the amyloid precursor protein by β- and γ-secretases. Rare mutations that lead to amino-acid substitutions within or close to the Aβ domain promote the formation(More)
Part of the inflammatory response in Alzheimer's disease (AD) is the upregulation of the inducible nitric oxide synthase (NOS2) resulting in increased NO production. NO contributes to cell signaling by inducing posttranslational protein modifications. Under pathological conditions there is a shift from the signal transducing actions to the formation of(More)
N-terminally truncated A␤ peptides starting with pyrogluta-mate (A␤pE3) represent a major fraction of all A␤ peptides in the brain of Alzheimer disease (AD) patients. A␤pE3 has a higher aggregation propensity and stability and shows increased toxicity compared with full-length A␤. In the present work, we generated a novel monoclonal antibody (9D5) that(More)
The progressive accumulation of extracellular amyloid plaques in the brain is a common hallmark of Alzheimer's disease (AD). We recently identified a novel species of Aβ phosphorylated at serine residue 8 with increased propensity to form toxic aggregates as compared to non-phosphorylated species. The age-dependent analysis of Aβ depositions using novel(More)
Alzheimer's disease (AD) is the most common form of dementia and associated with the progressive accumulation of amyloid β-peptides (Aβ) in form of extracellular amyloid plaques in the human brain. A critical role of Aβ in the pathogenesis of AD is strongly supported by gene mutations that cause early-onset familial forms of the disease. Such mutations have(More)
BACKGROUND The deposition of the amyloid β-peptide (Aβ) in the brain is one of the hallmarks of Alzheimer's disease (AD). It is not yet clear whether Aβ always leads to similar changes or whether it induces different features of neurodegeneration in relation to its intra- and/or extracellular localization or to its intracellular trafficking routes. To(More)
Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β-amyloid at serine 8 increases the stability of its(More)
ABSTRACT Escherichia coli mazEF is a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) "extracellular death factor" (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity of E. coli toxin MazF. Here we discovered that E. coli mazEF-mediated cell death could be triggered by QS(More)
The amyloid precursor protein (APP) is one of the major proteins involved in Alzheimer disease (AD). Proteolytic cleavage of APP gives rise to amyloid-β (Aβ) peptides that aggregate and deposit extensively in the brain of AD patients. Although the increase in levels of aberrantly folded Aβ peptide is considered to be important to disease pathogenesis, the(More)