Saswati Ganguly

  • Citations Per Year
Learn More
A systematic coarse graining of microscopic atomic displacements generates a local elastic deformation tensor D as well as a positive definite scalar χ measuring nonaffinity, i.e., the extent to which the displacements are not representable as affine deformations of a reference crystal. We perform an exact calculation of the statistics of χ and D and their(More)
A crystalline solid exhibits thermally induced localised non-affine droplets in the absence of external stress. Here we show that upon an imposed shear, the size of these droplets grow until they percolate at a critical strain, well below the value at which the solid begins to yield. This critical point does not manifest in most thermodynamic or mechanical(More)
We show that dynamic, feed-back controlled optical traps, whose positions depend on the instantaneous local configuration of particles in a pre-determined way, can stabilise colloidal particles in finite lattices of any given symmetry. Unlike in a static template, the crystal so formed is invariant under uniform translations and retains all possible zero(More)
We describe a phase transition that gives rise to structurally non-trivial states in a two-dimensional ordered network of particles connected by harmonic bonds. Monte Carlo simulations reveal that the network supports, apart from the homogeneous phase, a number of heterogeneous "pleated" phases, which can be stabilised by an external field. This field is(More)
Coarse-graining atomic displacements in a solid produces both local affine strains and "non-affine" fluctuations. Here we study the equilibrium dynamics of these coarse grained quantities to obtain space-time dependent correlation functions. We show how a subset of these thermally excited, non-affine fluctuations act as precursors for the nucleation of(More)
We present a framework to segregate the roles of elastic and non-elastic deformations in the examination of real-space experiments of solid-solid Martensitic transitions. The Martensitic transformation of a body-centred-tetragonal (BCT) to a body-centred-orthorhombic (BCO) crystal structure has been studied in a model system of micron-scale ionic microgel(More)
  • 1