Saskia T. C. Neuteboom

Learn More
Bortezomib therapy has proven successful for the treatment of relapsed and/or refractory multiple myeloma (MM); however, prolonged treatment is associated with toxicity and development of drug resistance. Here, we show that the novel proteasome inhibitor NPI-0052 induces apoptosis in MM cells resistant to conventional and Bortezomib therapies. NPI-0052 is(More)
A large fraction of pediatric pre-B acute lymphoblastoid leukemias (ALL) consistently contain a t(1;19) chromosomal translocation. The t(1;19) translocation results in the production of a chimeric transcription factor containing the N-terminal transactivation domain of E2A fused to the C-terminal DNA-binding homeodomain of Pbx1. Here, we show that the(More)
Salinosporamide A (1, NPI-0052) is a potent proteasome inhibitor in development for treating cancer. In this study, a series of analogues was assayed for cytotoxicity, proteasome inhibition, and inhibition of NF-kappaB activation. Marked reductions in potency in cell-based assays accompanied replacement of the chloroethyl group with unhalogenated(More)
The promoter region of the Agrobacterium tumefaciens T-cyt gene was fused to a β-glucuronidase (gusA) reporter gene and introduced into tobacco plants. Detection of gusA expression in transgenic F1 progeny revealed that the T-cyt promoter is active in many, if not all, cell types in leaves, stems and roots of fully developed plants. Developmental(More)
The diketopiperazine NPI-2358 is a synthetic analog of NPI-2350, a natural product isolated from Aspergillus sp., which depolymerizes microtubules in A549 human lung carcinoma cells. Although structurally different from the colchicine-binding site agents reported to date, NPI-2358 binds to the colchicine-binding site of tubulin. NPI-2358 has potent in-vitro(More)
Salinosporamide A ( 1 (NPI-0052)) is a potent, monochlorinated 20S proteasome inhibitor in clinical trials for the treatment of cancer. To elucidate the role of the chlorine leaving group (LG), we synthesized analogues with a range of LG potentials and determined their IC 50 values for inhibition of chymotrypsin-like (CT-L), trypsin-like (T-L), and(More)
We have used a binding site selection strategy to determine the optimal binding sites for Pbx proteins by themselves and as heterodimeric partners with various Hox gene products. Among the Pbx proteins by themselves, only Pbx3 binds with high affinity, as a monomer or as a homodimer, to an optimal binding site, TGATTGATTTGAT. An inhibitory domain located N(More)
The proteasome has emerged as an important clinically relevant target for the treatment of hematologic malignancies. Since the Food and Drug Administration approved the first-in-class proteasome inhibitor bortezomib (Velcade) for the treatment of relapsed/refractory multiple myeloma (MM) and mantle cell lymphoma, it has become clear that new inhibitors are(More)
PURPOSE In the current study, we examine the effects of a novel proteasome inhibitor, NPI-0052 (salinosporamide A), on proteasome function and nuclear factor-kappaB activation and evaluate its ability to enhance treatment response in colon cancer xenografts when administered orally. EXPERIMENTAL DESIGN The effects of treatment on nuclear factor-kappaB(More)
A novel DNA-binding activity, designated CBF, has been identified in nuclear extracts from tobacco leaf, stem and root tissue. CBF interacts specifically with a 30 bp promoter fragment, referred to as cyt-1, of the Agrobacterium tumefaciens T-DNA cytokinin (T-cyt) gene. The T-cyt promoter, although of bacterial origin is active in planta and the 30 bp cyt-1(More)