Saskia G. M. Plomp

Learn More
INTRODUCTION Chronic low back pain due to intervertebral disc (IVD) degeneration is associated with increased levels of inflammatory mediators. Current medical treatment consists of oral anti-inflammatory drugs to alleviate pain. In this study, the efficacy and safety of a novel thermoreversible poly-N-isopropylacrylamide MgFe-layered double hydroxide(More)
INTRODUCTION Strategies for biological repair and regeneration of the intervertebral disc (IVD) by cell and tissue engineering are promising, but few have made it into a clinical setting. Recombinant human bone morphogenetic protein 7 (rhBMP-7) has been shown to stimulate matrix production by IVD cells in vitro and in vivo in animal models of induced IVD(More)
Controlled biomaterial-based corticosteroid release might circumvent multiple injections and the accompanying risks, such as hormone imbalance and muscle weakness, in osteoarthritic (OA) patients. For this purpose, microspheres were prepared from an amino acid-based polyester amide (PEA) platform and loaded with triamcinolone acetonide (TAA). TAA loaded(More)
Chronic low back pain is a common clinical problem in both the human and canine population. Current pharmaceutical treatment often consists of oral anti-inflammatory drugs to alleviate pain. Novel treatments for degenerative disc diseases focus on local application of sustained released drug formulations. The aim of this study was to determine safety and(More)
OBJECTIVE To investigate the effect of decellularized cartilage-derived matrix (CDM) scaffolds, by itself and as a composite scaffold with a calcium phosphate (CaP) base, for the repair of osteochondral defects. It was hypothesized that the chondral defects would heal with fibrocartilaginous tissue and that the composite scaffold would result in better bone(More)
  • 1