Learn More
Although global declines in structure have been documented in the aging human brain, little is known about the functional integrity of the striatum and prefrontal cortex in older adults during incentive processing. We used event-related functional magnetic resonance imaging to determine whether younger and older adults differed in both self-reported and(More)
Evidence from psychopharmacological research has revealed that dopamine receptor agents have opposite effects on cognitive function depending on baseline levels of working memory capacity. These contrasting effects have been interpreted to reflect differential baseline levels of dopamine. Here we demonstrate for the first time that working memory capacity(More)
Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning reflect variation in baseline striatal dopamine synthesis(More)
Although the prefrontal cortex (PFC) is consistently found to be associated with various working memory processes, the necessity of the PFC for such processes remains unclear. To elucidate PFC contributions to storage and rehearsal/maintenance processes engaged during verbal working memory function, we assessed behavior of patients with lesions to the left(More)
RATIONALE Animal research suggests that anticipation of reward can elicit dopamine release in the nucleus accumbens (NAcc). Human functional magnetic resonance imaging (FMRI) research further suggests that reward anticipation can increase local blood oxygen level dependent (BOLD) signal in the NAcc. However, the physiological relationship between dopamine(More)
Dopamine receptors are abundant in the prefrontal cortex (PFC), a critical region involved in working memory. This pharmacological fMRI study tested the relationships between dopamine, PFC function, and individual differences in working memory capacity. Subjects performed a verbal delayed-recognition task after taking either the dopamine receptor agonist(More)
RATIONALE Dopamine is abundant in the prefrontal cortex and striatum, regions implicated in working memory processes. Monkey studies suggest that subpopulations of prefrontal neurons are sensitive to component processes of working memory, and that dopaminergic actions at D1 and D2 receptors differentially affect these neurons. However, it is not known to(More)
Insects, birds, and mammals have been shown capable of encoding spatial information in memory using multiple strategies or frames of reference simultaneously. These strategies include orientation to a goal-specific cue or beacon, to the position of the goal in an array of local landmarks, or to its position in the array of distant landmarks, also known as(More)
We investigated the effect of bromocriptine, a dopamine agonist, on individual differences in behavior as well as frontal-striatal connectivity during a working memory task. After dopaminergic augmentation, frontal-striatal connectivity in low working memory capacity individuals increases, corresponding with behavioral improvement whereas decreases in(More)
Although global declines in structure have been documented in the aging human brain, little is known about the functional integrity of the striatum and prefrontal cortex in older adults during incentive processing. We used event-related functional magnetic resonance imaging to determine whether younger and older adults differed in both self-reported and(More)
  • 1