Learn More
Epidemiological studies have documented a reduced prevalence of Alzheimer's disease among users of nonsteroidal anti-inflammatory drugs (NSAIDs). It has been proposed that NSAIDs exert their beneficial effects in part by reducing neurotoxic inflammatory responses in the brain, although this mechanism has not been proved. Here we report that the NSAIDs(More)
Increasing evidence has implicated the low density lipoprotein receptor-related protein (LRP) and the adaptor protein FE65 in Alzheimer's disease pathogenesis. We have shown previously that LRP mediates beta-amyloid precursor protein (APP) processing and affects amyloid beta-protein and APP secretion and APP-c-terminal fragment generation. Furthermore, LRP(More)
Epidemiologic studies demonstrate that long-term use of NSAIDs is associated with a reduced risk for the development of Alzheimer disease (AD). In this study, 20 commonly used NSAIDs, dapsone, and enantiomers of flurbiprofen were analyzed for their ability to lower the level of the 42-amino-acid form of amyloid beta protein (Abeta42) in a human H4 cell(More)
Increased Abeta42 production has been linked to the development of Alzheimer disease. We now identify a number of compounds that raise Abeta42. Among the more potent Abeta42-raising agents identified are fenofibrate, an antilipidemic agent, and celecoxib, a COX-2-selective NSAID. Many COX-2-selective NSAIDs tested raised Abeta42, including multiple(More)
Non-steroidal anti-inflammatory drugs (NSAIDs) have been considered for treatment and prevention of Alzheimer's disease (AD) for more than two decades. Biochemical markers in the brains of individuals with AD suggest that inflammation might be a driving cause of the disease that can be suppressed by drug treatment. In addition, a subgroup of widely used(More)
Chronic use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a lower risk of developing Alzheimer's disease. Recent evidence indicates that some NSAIDs specifically inhibit secretion of the amyloidogenic A beta 42 peptide in cultured cells and mouse models of Alzheimer's disease. The reduction of A beta 42 peptides is not mediated by(More)
The low-density lipoprotein receptor-related protein (LRP) has recently been implicated in numerous intracellular signaling functions, as well as in Alzheimer's disease pathogenesis. Studies have shown that the beta-amyloid precursor protein (APP) interacts with LRP and that this association may impact the production of amyloid beta-protein (Abeta). In this(More)
Alzheimer's disease (AD) is characterized by neurotoxic amyloid-ß plaque formation in brain parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA). Besides CAA, AD is strongly related to vascular diseases such as stroke and atherosclerosis. Cerebrovascular dysfunction occurs in AD patients leading to alterations in blood flow that(More)
Several reports have suggested a role for polyomaviruses in the pathogenesis of human brain tumors. This potential involvement is not conclusively resolved. For the present study, a highly sensitive PCR-assay with fluorescence-labelled primers was developed to search for polyomavirus sequences in human brain tumor and control DNA samples. The assay was(More)
According to the "amyloid hypothesis", the amyloid-β (Aβ) peptide is the toxic intermediate driving Alzheimer's disease (AD) pathogenesis. Recent evidence suggests that the low density lipoprotein receptor-related protein 1 (LRP1) transcytoses Aβ out of the brain across the blood-brain barrier (BBB). To provide genetic evidence for LRP1-mediated(More)