Learn More
Aging of the hematopoietic stem cell compartment is believed to contribute to the onset of a variety of age-dependent blood cell pathophysiologies. Mechanistic drivers of hematopoietic stem cell (HSC) aging include DNA damage accumulation and induction of tumor suppressor pathways that combine to reduce the regenerative capacity of aged HSCs. Such(More)
In acute myeloid leukaemia (AML), the cell of origin, nature and biological consequences of initiating lesions, and order of subsequent mutations remain poorly understood, as AML is typically diagnosed without observation of a pre-leukaemic phase. Here, highly purified haematopoietic stem cells (HSCs), progenitor and mature cell fractions from the blood of(More)
The role of cytokines as regulators of hematopoietic stem cell (HSC) expansion remains elusive. Herein, we identify thrombopoietin (THPO) and the cytokine signaling inhibitor LNK, as opposing physiological regulators of HSC expansion. Lnk(-/-) HSCs continue to expand postnatally, up to 24-fold above normal by 6 mo of age. Within the stem cell compartment,(More)
Understanding how differentiation programs originate from the gene-expression 'landscape' of hematopoietic stem cells (HSCs) is crucial for the development of new clinical therapies. We mapped the transcriptional dynamics underlying the first steps of commitment by tracking transcriptome changes in human HSCs and eight early progenitor populations. We found(More)
Multiple transcription factors guide the development of mature functional natural killer (NK) cells, yet little is known about their function. We used global gene expression and genome-wide binding analyses combined with developmental and functional studies to unveil three roles for the ETS1 transcription factor in NK cells. ETS1 functions at the earliest(More)
To investigate molecular events involved in the regulation of lymphoid lineage commitment, we crossed lambda5 reporter transgenic mice to Rag1-GFP knockin mice. This allowed us to subfractionate common lymphoid progenitors and pre-pro-B (fraction A) cells into lambda5(-)Rag1(low), lambda5(-)Rag1(high), and lambda5(+)Rag1(high) cells. Clonal in vitro(More)
Regulated blood production is achieved through the hierarchical organization of dormant hematopoietic stem cell (HSC) subsets that differ in self-renewal potential and division frequency, with long-term (LT)-HSCs dividing the least. The molecular mechanisms underlying this variability in HSC division kinetics are unknown. We report here that quiescence exit(More)
Development of B-lymphoid cells in the bone marrow is a process under strict control of a hierarchy of transcription factors. To understand the development of a B-lymphoid-restricted functional network of transcription factors, we have investigated the cell autonomous role of the transcription factor EBF1 in early B cell development. This revealed that even(More)
In a classical view of hematopoiesis, the various blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. We developed a cell-sorting scheme to resolve myeloid (My), erythroid (Er), and megakaryocytic(More)
Commitment of hematopoietic progenitor cells to B-lymphoid cell fate has been suggested to coincide with the development of PAX5-expressing B220(+)CD19(+) pro-B cells. We have used a transgenic reporter mouse, expressing human CD25 under the control of the B-lineage-restricted Igll1 (lambda5) promoter to investigate the lineage potential of early progenitor(More)