Sarthak Misra

Learn More
User acceptance of myoelectric forearm prostheses is currently low. Awkward control, lack of feedback, and difficult training are cited as primary reasons. Recently, researchers have focused on exploiting the new possibilities offered by advancements in prosthetic technology. Alternatively, researchers could focus on prosthesis acceptance by developing(More)
The tip asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. This enables robotic needle steering, which can be used in medical procedures to reach subsurface targets inaccessible by straight-line trajectories. However, accurate path planning and control of needle steering requires models of(More)
In this paper, a two-layer approach is presented to guarantee the stable behavior of bilateral telemanipulation systems in the presence of time-varying destabilizing factors such as hard contacts, relaxed user grasps, stiff control settings, and/or communication delays. The approach splits the control architecture into two separate layers. The hierarchical(More)
Needle-based procedures are commonly performed during minimally invasive surgery for treatment and diagnosis. Accurate needle tip placement is important for the success of the procedures. Misplacement of the needle tip might cause unsuccessful treatment or misdiagnosis. Robot-assisted needle insertion systems have been developed in order to steer flexible(More)
This paper describes the design of a system for controlling the position of spherical paramagnetic microparticles that have an average diameter of 100 µm. The focus of this study lies in designing and implementing a system that uses microscopic images and electromagnets. Preliminary experiments have been done to verify the feasibility of the system(More)
Realistic modeling of medical interventions involving tool-tissue interactions has been considered to be a key requirement in the development of high-fidelity simulators and planners. Organ geometry, soft-tissue constitutive laws, and boundary conditions imposed by the connective tissues surrounding the organ are some of the factors that govern the accuracy(More)
Needle insertion procedures are commonly used for surgical interventions. In this paper, we develop a three-dimensional (3D) closed-loop control algorithm to robotically steer flexible needles with an asymmetric tip towards a target in a soft-tissue phantom. Twelve Fiber Bragg Grating (FBG) sensors are embedded on the needle shaft. FBG sensors measure the(More)
This work investigates modeling and control of microparticles that could be guided inside the human body using external magnetic fields. Proposed areas of applications for these microparticles include but not limited to minimally invasive surgeries, diagnosis and sensing. The problem is formulated by modeling a magnetic prototype system which has been(More)
Needle insertion procedures are commonly used for diagnostic and therapeutic purposes. In this paper, an image-guided control system is developed to robotically steer flexible needles with an asymmetric tip. Knowledge about needle deflection is required for accurate steering. Two different models to predict needle deflection are presented. The first is a(More)
Needle insertion is one of the most commonly performed minimally invasive procedures. Visualization of the needle during insertion is key for either successful diagnosis or therapy. This work presents the real-time three-dimensional tracking of flexible needles during insertion into a soft-tissue simulant using a two-dimensional (2D) ultrasound transducer.(More)