Sarolta Undi

Learn More
Neurotransmitters released by myenteric neurons regulate movements of intestinal smooth muscles. There has been little pharmacological evidence for a role of purinergic mechanisms in the non-adrenergic, non-cholinergic (NANC) relaxation of the human large intestine. We used P(2) purinoceptor antagonists to assess whether such receptors are involved in the(More)
Studying the visceral effects of the sensory stimulant capsaicin is a useful and relatively simple tool of neurotransmitter identification and has been used for this purpose for approximately 25 years in the authors' and other laboratories. We believe that conclusions drawn from experiments on visceral preparations may have an impact on studies dealing with(More)
There has been no direct functional evidence for a purinergic innervation of the human intestinal muscle. In the present study, the relaxant effects of electrical field stimulation (1 or 10 Hz for 20s), ATP, and isoprenaline were studied in organ bath experiments on precontracted circular muscle strips of the human ileum. Non-adrenergic, non-cholinergic(More)
Adenosine 5'-triphosphate (ATP) may be an important neurotransmitter in the gastrointestinal tract. The present study examined the motor effects of exogenous ATP on longitudinally-oriented preparations of the guinea-pig isolated ileum and the influence of drugs on the ATP-induced responses. High micromolar concentrations of ATP caused two types of(More)
The aim of the present study was to assess the acute motility effects and desensitizing activity of the stable ATP analogue and P(2X) purinoceptor agonist alpha,beta-methylene ATP (alpha,beta-meATP) and the effect of alpha,beta-meATP desensitization on nerve-mediated cholinergic responses in the guinea-pig ileum in vitro. It was confirmed that(More)
Capsaicin-sensitive extrinsic afferent nerves have been demonstrated to release biologically active substances in the gastrointestinal (GI) tract. This fact may be useful for identifying sensory transmitter substances in isolated organ experiments. In the GI tract of animals neuropeptides like tachykinins and calcitonin gene-related peptide (CGRP) mediate(More)
  • 1