Learn More
Portable embedded computing systems require energy autonomy. This is achieved by batteries serving as a dedicated energy source. The requirement of portability places severe restrictions on size and weight, which in turn limits the amount of energy that is continuously available to maintain system operability. For these reasons, efficient energy utilization(More)
Once the battery becomes fully discharged, a battery-powered portable electronic system goes off-line. Therefore, it is important to take the battery behavior into account. A system designer needs an adequate high-level model in order to make battery-aware decisions that target maximization of the system's lifetime on-line. We propose such a model: it(More)
Deformations in interconnect due to process variations can lead to significant performance degradation in deep sub-micron circuits. Timing analyzers attempt to capture the effects of variation on delay with simplified models. The timing verification of RC or RLC networks requires the substitution of such simplified models with spatial stochastic processes(More)
Batteries are non-ideal energy sources - minimizing the energy consumption of a battery-powered system is not equivalent to maximizing its battery life. We propose an alternative interpretation of a previously proposed battery model, which indicates that the deviation from ideal behavior is due to the buildup of "unavailable charge" during the discharge(More)
The growing impact of within-die process variation has created the need for statistical timing analysis, where gate delays are modeled as random variables. Statistical timing analysis has traditionally suffered from exponential run time complexity with circuit size, due to the dependencies created by reconverging paths in the circuit. In this paper we(More)