Sari A. Ruuska

Learn More
We have used cDNA microarrays to examine changes in gene expression during Arabidopsis seed development and to compare wild-type and mutant wrinkled1 (wri1) seeds that have an 80% reduction in oil. Between 5 and 13 days after flowering, a period preceding and including the major accumulation of storage oils and proteins, approximately 35% of the genes(More)
The genome of Arabidopsis has been searched for sequences of genes involved in acyl lipid metabolism. Over 600 encoded proteins have been identified, cataloged, and classified according to predicted function, subcellular location, and alternative splicing. At least one-third of these proteins were previously annotated as "unknown function" or with functions(More)
Linear electron transport in chloroplasts produces a number of reduced components associated with photosystem I (PS I) that may subsequently participate in reactions that reduce O2. The two primary reactions that have been extensively studied are: first, the direct reduction of O2 to superoxide by reduced donors associated with PS I (the Mehler reaction),(More)
To provide a broad analysis of gene expression in developing Arabidopsis seeds, microarrays have been produced that display approximately 2,600 seed-expressed genes. DNA for genes spotted on the arrays were selected from >10,000 clones partially sequenced from a cDNA library of developing seeds. Based on a series of controls, sensitivity of the arrays was(More)
Seeds of many plant species are green during embryogenesis. To directly assess the influence of light on the physiological status of green oilseeds in planta, Brassica napus and soybean (Glycine max) seeds were rapidly dissected from plants growing in the light or dark. The activation state of malate dehydrogenase, which reflects reduced thioredoxin and(More)
Transgenic tobacco (Nicotiana tabacum L. cv. W38) plants with an antisense gene directed against the mRNA of the small subunit of Rubisco were used to investigate the role of O2 as an electron acceptor during photosynthesis. The reduction in Rubisco has reduced the capacity for CO2-fixation in these plants without a similar reduction in electron transport(More)
We investigated the molecular basis of the long-term adaptation to nitrogen (N) limitation of wheat plants grown in a simulated crop canopy, with a focus on the stage when carbon (C) reserves are accumulated in stems for later remobilization to grain. A cDNA microarray representing approximately 36,000 unique sequences was used to compare gene expression in(More)
Leaf metabolites, adenylates, and Rubisco activation were studied in two transgenic tobacco (Nicotiana tabacum L. cv W38) types. Plants with reduced amounts of cytochrome b/f complex (anti-b/f) have impaired electron transport and a low transthylakoid pH gradient that restrict ATP and NADPH synthesis. Plants with reduced glyceraldehyde 3-phosphate(More)
BACKGROUND AND AIMS Carbohydrate temporarily accumulates in wheat stems during the early reproductive growth phase, predominantly as water soluble carbohydrate (WSC), and is subsequently remobilized during grain filling. Starch has also been reported as a minor storage carbohydrate component in wheat stems, but the details are lacking. METHODS The(More)