Saravana Kumar Balasubramanian

Learn More
Fourier transform infrared spectroscopy (FTIR) and cryomicroscopy were used to define the process of cellular injury during freezing in LNCaP prostate tumor cells, at the molecular level. Cell pellets were monitored during cooling at 2 degrees C/min while the ice nucleation temperature was varied between -3 and -10 degrees C. We show that the cells tend to(More)
Restenosis in peripheral arteries is a major health care problem in the United States. Typically, 30–40% of angioplasties result in restenosis and hence alternative treatment techniques are being actively investigated. Cryoplasty, a novel technique involving simultaneous stretching and freezing of the peripheral arteries (e.g., femoral, iliac, popliteal)(More)
Understanding the biophysical processes that govern freezing injury of a tissue equivalent (TE) is an important step in characterizing and improving the cryopreservation of these systems. TEs were formed by entrapping human dermal fibroblasts (HDFs) in collagen or in fibrin gels. Freezing studies were conducted using a Linkam cryostage fitted to an optical(More)
Bioartificial liver devices (BALs) have proven to be an effective bridge to transplantation for cases of acute liver failure. Enabling the long-term storage of these devices using a method such as cryopreservation will ensure their easy off the shelf availability. To date, cryopreservation of liver cells has been attempted for both single cells and sandwich(More)
Cell survival during freezing applications in biomedicine is highly correlated to the temperature history and its dependent cellular biophysical events of dehydration and intracellular ice formation (IIF). Although cell membranes are known to play a significant role in cell injury, a clear correlation between the membrane state and the surrounding(More)
Thermal denaturation of proteins is critical to cell injury, food science and other biomaterial processing. For example protein denaturation correlates strongly with cell death by heating, and is increasingly of interest in focal thermal therapies of cancer and other diseases at temperatures which often exceed 50 °C. The Arrhenius model is a simple yet(More)
  • 1