Learn More
Exposure to Mycobacterium tuberculosis produces varied early outcomes, ranging from resistance to infection to progressive disease. Here we report results from a forward genetic screen in zebrafish larvae that identify multiple mutant classes with distinct patterns of innate susceptibility to Mycobacterium marinum. A hypersusceptible mutant maps to the(More)
Drug resistance surveillance and strain typing of Mycobacterium leprae are necessary to investigate ongoing transmission of leprosy in regions of endemicity. To enable wider implementation of these molecular analyses, novel real-time PCR-high-resolution melt (RT-PCR-HRM) assays without allele-specific primers or probes and post-PCR sample handling were(More)
BACKGROUND Because of its wide spectrum of clinical manifestations and its well-defined immunological complications, leprosy is a useful disease for studying genetic regulation of the host response to infection. We hypothesized that polymorphisms in the nucleotide-binding oligomerization domain containing 2 (NOD2) gene, for a cytosolic receptor known to(More)
UNLABELLED Leprosy care has been integrated with peripheral health services, away from vertical programmes. This includes the diagnosis and management of leprosy reactions, which cause significant morbidity. We surveyed patients with leprosy reactions at two leprosy hospitals in Nepal to assess their experience of leprosy reaction management following(More)
BACKGROUND Leprosy, a chronic granulomatous disease affecting the skin and nerves, is caused by Mycobacterium leprae (M. leprae). The type of leprosy developed depends upon the host immune response. Type 1 reactions (T1Rs), that complicate borderline and lepromatous leprosy, are due to an increase in cell-mediated immunity and manifest as nerve damage and(More)
BACKGROUND Acute inflammatory reactions are a frequently occurring, tissue destructing phenomenon in infectious- as well as autoimmune diseases, providing clinical challenges for early diagnosis. In leprosy, an infectious disease initiated by Mycobacterium leprae (M. leprae), these reactions represent the major cause of permanent neuropathy. However,(More)
Regulatory T (Treg) cells are known for their role in maintaining self-tolerance and balancing immune reactions in autoimmune diseases and chronic infections. However, regulatory mechanisms can also lead to prolonged survival of pathogens in chronic infections like leprosy and tuberculosis (TB). Despite high humoral responses against Mycobacterium leprae(More)
Silent transmission of Mycobacterium leprae, as evidenced by stable leprosy incidence rates in various countries, remains a health challenge despite the implementation of multidrug therapy worldwide. Therefore, the development of tools for the early diagnosis of M. leprae infection should be emphasised in leprosy research. As part of the continuing effort(More)
BACKGROUND Leprosy is complicated by immunological reactions which can occur before, during and after successful completion of multidrug therapy. Genetic studies have suggested that polymorphisms in toll-like receptors (TLRs) may affect the susceptibility of an individual with leprosy to developing Type 1 reactions. OBJECTIVES To examine the gene and(More)
BACKGROUND Leprosy is an infectious disease caused by Mycobacterium leprae that affects the skin and nerves. Although curable with multidrug therapy, leprosy is complicated by acute inflammatory episodes called reactions, which are the major causes of irreversible neuropathy in leprosy that occur before, during, and even after treatment. Early diagnosis and(More)