Sarangapani Jagannathan

Learn More
In this paper, the optimal regulation and tracking control of affine nonlinear continuous-time systems with known dynamics is undertaken using a novel single online approximator (SOL)-based scheme. The SOLA-based adaptive approach is designed to learn the infinite horizon continuoustime Hamilton-Jacobi-Bellman (HJB) equation and its corresponding optimal(More)
A family of novel multilayer discrete-time neural-net (NN) controllers is presented for the control of a class of multi-input multi-output (MIMO) dynamical systems. The neural net controller includes modified delta rule weight tuning and exhibits a learning while-functioning-features. The structure of the NN controller is derived using a filtered(More)
In this paper, a new nonlinear controller for a quadrotor unmanned aerial vehicle (UAV) is proposed using neural networks (NNs) and output feedback. The assumption on the availability of UAV dynamics is not always practical, especially in an outdoor environment. Therefore, in this work, an NN is introduced to learn the complete dynamics of the UAV online,(More)
The optimal control of linear systems accompanied by quadratic cost functions can be achieved by solving the well-known Riccati equation. However, the optimal control of nonlinear discrete-time systems is a much more challenging task that often requires solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation. In the recent literature, discrete-time(More)
Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter(More)
In this paper, the Hamilton-Jacobi-Bellman equation is solved forward-in-time for the optimal control of a class of general affine nonlinear discrete-time systems without using value and policy iterations. The proposed approach, referred to as adaptive dynamic programming, uses two neural networks (NNs), to solve the infinite horizon optimal regulation(More)
A novel neural network (NN)-based nonlinear decentralized adaptive controller is proposed for a class of large-scale, uncertain, interconnected nonlinear systems in strict-feedback form by using the dynamic surface control (DSC) principle, thus, the “explosion of complexity” problem which is observed in the conventional backstepping approach(More)