Learn More
The Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA-1) is required for the maintenance of the viral chromosome in latently infected, proliferating cells and plays a role in latent cycle DNA replication. EBNA-1 also functions as a positive and negative regulator of EBV gene expression. We have investigated the interaction of EBNA-1 with p32, a host(More)
Members of the IFN regulatory factor (IRF) family regulate gene expression critical to immune response, hemopoiesis, and proliferation. Although related by homology at their N-terminal DNA-binding domain, they display individual functional properties. The distinct properties result from differences in regulated expression, response to activating signals,(More)
The cellular defense to infection depends on accurate activation of transcription factors and expression of select innate immunity genes. Interferon regulatory factor 5 (IRF5), a risk factor for systemic lupus erythematosus, is activated in response to pathogen recognition receptor engagement and downstream effector molecules. We find the nucleotide-binding(More)
This study reveals a new complexity in the cellular response to DNA damage: activation of IFN signaling. The DNA damage response involves the rapid recruitment of repair enzymes and the activation of signal transducers that regulate cell-cycle checkpoints and cell survival. To understand the link between DNA damage and the innate cellular defense that(More)
The ability of interferons (IFNs) to inhibit viral replication and cellular proliferation is well established, but the specific contribution of each IFN-stimulated gene (ISG) to these biological responses remains to be completely understood. In this report we demonstrate that ISG54, also known as IFN-induced protein with tetratricopeptide repeats 2 (IFIT2),(More)
Replication of the Epstein-Barr virus genome initiates at one of several sites in latently infected, dividing cells. One of these replication origins is close to the viral DNA maintenance element, and, together, this replication origin and the maintenance element are referred to as oriP. The replicator of oriP contains four binding sites for Epstein-Barr(More)
  • 1