Learn More
Clinicopathologic features of 303 cases of Ewing's sarcoma of bone collected by the Intergroup Ewing's Sarcoma Study group are described. Ewing's sarcoma was found to arise predominantly in the inferior segment of the skeleton in young white patients from 10 to 15 years of age. Of the several recognized histologic patterns, the filagree pattern--an organoid(More)
Cellular-FLICE inhibitory protein (c-FLIP) is a key anti-apoptotic regulator that inhibits cell death mediated by the death receptors Fas, DR4, DR5, and TNF-R1. Three splice variants of c-FLIP function at the DISC level by blocking the processing and activation of procaspase-8 and -10. Overexpression of c-FLIP has been identified in many different tumour(More)
UNLABELLED Anti-tumour therapies based on the use pro-apoptotic receptor agonists, including TNF-related apoptosis-inducing ligand (TRAIL) or monoclonal antibodies targeting TRAIL-R1 or TRAIL-R2, have been disappointing so far, despite clear evidence of clinical activity and lack of adverse events for the vast majority of these compounds, whether combined(More)
TNF-related apoptosis-inducing ligand (TRAIL) and its receptors are attractive targets for anticancer therapy owing to their ability to trigger apoptosis selectively in cancer cells but not in normal cells. To date, many combinatorial strategies, such as chemotherapy or radiotherapy, have given encouraging results for overcoming TRAIL resistance in(More)
First discovered in 1962, heat shock proteins (HSPs) are highly studied with about 35,500 publications on the subject to date. HSPs are highly conserved, function as molecular chaperones for a large panel of "client" proteins and have strong cytoprotective properties. Induced by many different stress signals, they promote cell survival in adverse(More)
The use of TRAIL/APO2L and monoclonal antibodies targeting TRAIL receptors for cancer therapy holds great promise, due to their ability to restore cancer cell sensitivity to apoptosis in association with conventional chemotherapeutic drugs in a large variety of tumors. TRAIL-induced cell death is tightly regulated right from the membrane and at the DISC(More)
The inhibitor of apoptosis (IAP) proteins are important ubiquitin E3 ligases that regulate cell survival and oncogenesis. The cIAP1 and cIAP2 paralogs bear three N-terminal baculoviral IAP repeat (BIR) domains and a C-terminal E3 ligase RING domain. IAP antagonist compounds, also known as Smac mimetics, bind the BIR domains of IAPs and trigger rapid(More)
Control of apoptotic signalling pathways depends on the balance between proapoptotic and prosurvival molecules. The 'inhibitor of apoptosis' (IAP) proteins are negative regulators of apoptosis that function by inhibiting the executioners of cell death (caspases), or by blocking the pathways that activate them. The IAP proteins function as ubiquitin E3(More)
BACKGROUND TRAIL/Apo2L is a pro-apoptotic ligand of the TNF family that engages the apoptotic machinery through two pro-apoptotic receptors, TRAIL-R1 and TRAIL-R2. This cell death program is tightly controlled by two antagonistic receptors, TRAIL-R3 and TRAIL-R4, both devoid of a functional death domain, an intracellular region of the receptor, required for(More)