Learn More
February 2005 | Volume 3 | Issue 2 | e59 The excitement of scientifi c research and discovery cannot be fully conveyed by didactic lectures alone. Several recent initiatives and proposals, therefore, have supported a more participatory, discovery-based instruction for undergraduate science education [1,2]. In functional genomics, we have found an ideal(More)
Using a large consortium of undergraduate students in an organized program at the University of California, Los Angeles (UCLA), we have undertaken a functional genomic screen in the Drosophila eye. In addition to the educational value of discovery-based learning, this article presents the first comprehensive genomewide analysis of essential genes involved(More)
Neural progenitors of the Drosophila larval brain, called neuroblasts, can be divided into distinct populations based on patterns of proliferation and differentiation. Type I neuroblasts produce ganglion mother cells (GMCs) that divide once to produce differentiated progeny, while type II neuroblasts produce self-renewing intermediate neural progenitors(More)
The placenta is a complex and essential organ composed largely of fetal-derived cells, including several different trophoblast subtypes that work in unison to support nutrient transport to the fetus during pregnancy. Abnormal placental development can lead to pregnancy-associated disorders that often involve metabolic dysfunction. The scope of dysregulated(More)
Glucose metabolism in trophoblast cells is essential to provide the required energy for the development and function of the placenta. Glyceraldehyde 3-phosphate dehydrogenase (Gapdh), a key enzyme in the glycolysis pathway has been considered ubiquitously expressed in cells. There is, however, a growing body of evidence suggesting that Gapdh has many(More)
  • 1