Sarah-Maria Fendt

Learn More
Proliferating mammalian cells use glutamine as a source of nitrogen and as a key anaplerotic source to provide metabolites to the tricarboxylic acid cycle (TCA) for biosynthesis. Recently, mammalian target of rapamycin complex 1 (mTORC1) activation has been correlated with increased nutrient uptake and metabolism, but no molecular connection to(More)
Stable isotope, and in particular (13)C-based flux analysis, is the exclusive approach to experimentally quantify the integrated responses of metabolic networks. Here we describe a protocol that is based on growing microbes on (13)C-labeled glucose and subsequent gas chromatography mass spectrometric detection of (13)C-patterns in protein-bound amino acids.(More)
Measuring intracellular metabolism has increasingly led to important insights in biomedical research. (13)C tracer analysis, although less information-rich than quantitative (13)C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway(More)
Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2 deletion affects proliferation and metabolism in nontransformed, nonimmortalized PKM2-expressing primary cells. We find that(More)
Reductively metabolized glutamine is a major cellular carbon source for fatty acid synthesis during hypoxia or when mitochondrial respiration is impaired. Yet, a mechanistic understanding of what determines reductive metabolism is missing. Here we identify several cellular conditions where the α-ketoglutarate/citrate ratio is changed due to an altered(More)
What is the relationship between enzymes and metabolites, the two major constituents of metabolic networks? We propose three alternative relationships between enzyme capacity and metabolite concentration alterations based on a Michaelis-Menten kinetic; that is enzyme capacities, metabolite concentrations, or both could limit the metabolic reaction rates.(More)
Growth-promoting signaling molecules, including the mammalian target of rapamycin complex 1 (mTORC1), drive the metabolic reprogramming of cancer cells required to support their biosynthetic needs for rapid growth and proliferation. Glutamine is catabolyzed to α-ketoglutarate (αKG), a tricarboxylic acid (TCA) cycle intermediate, through two deamination(More)
Metformin inhibits cancer cell proliferation, and epidemiology studies suggest an association with increased survival in patients with cancer taking metformin; however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism(More)
Hematopoietic stem cells (HSCs) in the fetal liver (FL) unlike adult bone marrow (BM) proliferate extensively, posing different metabolic demands. However, metabolic pathways responsible for the production of energy and cellular building blocks in FL HSCs have not been described. Here, we report that FL HSCs use oxygen dependent energy generating pathways(More)
PURPOSE Isocitrate dehydrogenase (IDH) gene mutations occur in low-grade and high-grade gliomas. We sought to identify the genetic basis of malignant phenotype heterogeneity in IDH-mutant gliomas. METHODS We prospectively implanted tumor specimens from 20 consecutive IDH1-mutant glioma resections into mouse brains and genotyped all resection specimens(More)