Learn More
UNLABELLED LibSBML is an application programming interface library for reading, writing, manipulating and validating content expressed in the Systems Biology Markup Language (SBML) format. It is written in ISO C and C++, provides language bindings for Common Lisp, Java, Python, Perl, MATLAB and Octave, and includes many features that facilitate adoption and(More)
Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus 'metabolic reconstruction', which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the(More)
The use of computational modeling to describe and analyze biological systems is at the heart of systems biology. Model structures, simulation descriptions and numerical results can be encoded in structured formats, but there is an increasing need to provide an additional semantic layer. Semantic information adds meaning to components of structured(More)
SUMMARY We present SBMLToolbox, a toolbox that facilitates importing and exporting models represented in the Systems Biology Markup Language (SBML) in and out of the MATLAB environment and provides functionality that enables an experienced user of either SBML or MATLAB to combine the computing power of MATLAB with the portability and exchangeability of an(More)
Computational models can help researchers to interpret data, understand biological function, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that can be exchanged between different software systems. SBML is oriented towards describing biological(More)
BioModels (http://www.ebi.ac.uk/biomodels/) is a repository of mathematical models of biological processes. A large set of models is curated to verify both correspondence to the biological process that the model seeks to represent, and reproducibility of the simulation results as described in the corresponding peer-reviewed publication. Many models(More)
Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific(More)
Systems biology projects and omics technologies have led to a growing number of biochemical pathway models and reconstructions. However, the majority of these models are still created de novo, based on literature mining and the manual processing of pathway data. To increase the efficiency of model creation, the Path2Models project has automatically(More)