Sarah M. Erfani

Learn More
In collaborative anomaly detection, multiple data sources submit their data to an on-line service, in order to detect anomalies with respect to the wider population. A major challenge is how to achieve reasonable detection accuracy without disclosing the actual values of the participants' data. We propose a lightweight and scalable privacy-preserving(More)
—Participatory sensing using mobile devices is emerging as a promising method for large-scale data sampling. A critical challenge for participatory sensing is how to preserve the privacy of individual contributors' data. In addition, the integrity of the data aggregation is vital to ensure the acceptance of the participating sensing model by the(More)
The problem of unsupervised anomaly detection arises in a wide variety of practical applications. While one-class support vector machines have demonstrated their effectiveness as an anomaly detection technique, their ability to model large datasets is limited due to their memory and time complexity for training. To address this issue for supervised learning(More)
—The existence of large volumes of time series data in many applications has motivated data miners to investigate specialized methods for mining time series data. Clustering is a popular data mining method due to its powerful exploratory nature and its usefulness as a preprocessing step for other data mining techniques. This article develops two novel(More)
Many conventional statistical machine learning algorithms generalise poorly if distribution bias exists in the datasets. For example, distribution bias arises in the context of domain generalisation, where knowledge acquired from multiple source domains need to be used in a previously unseen target domains. We propose Elliptical Summary Randomisation(More)