Sarah L. Hutchinson

Learn More
FBN1 mutations cause Marfan syndrome (MFS), an autosomal dominant disorder of connective tissue. One of the unexplained features of MFS is the pathogenic mechanism that leads to marked inter- and intra-familial clinical variability, despite complete disease penetrance. An FBN1 deletion patient [46,XXdel(15)(q15q22.1)] was identified whose fibrillin-1(More)
Mutations in the gene encoding extracellular glycoprotein fibrillin-1 (FBN1) cause Marfan syndrome (MFS) and other related connective tissue disorders. In this study, eight mutations have been detected in MFS patients by heteroduplex analysis. These comprise two missense mutations, C1835Y and C2258Y in calcium-binding epidermal growth factor-like domains,(More)
HLA-A*6801 exhibits several unusual features. First, it is known to bind weakly to CD8 due to the presence of an A245V substitution in the alpha3 domain. Second, it is able to accommodate unusually long peptides as a result of peptide 'kinking' in the binding groove. Third, CD8+ cytotoxic T lymphocytes that recognise HLA-A*6801-restricted antigens can(More)
Murine cytomegalovirus (MCMV) is an important animal model of human cytomegalovirus (HCMV), a β-Herpesvirus that infects the majority of the world's population and causes disease in neonates and immunocompromised adults. CD8(+) T cells are a major part of the immune response to MCMV and HCMV. Processing of peptides for presentation to CD8(+) T cells may be(More)
Cytotoxic T lymphocytes recognize short peptides presented in association with MHC class I (MHCI) molecules on the surface of target cells. The Ag specificity of T lymphocytes is conferred by the TCR, but invariable regions of the peptide-MHCI (pMHCI) molecule also interact with the cell surface glycoprotein CD8. The distinct binding sites for CD8 and the(More)
T lymphocytes recognize peptides presented in the context of major histocompatibility complex (MHC) molecules on the surface of antigen presenting cells. Recognition specificity is determined by the alphabeta T cell receptor (TCR). The T lymphocyte surface glycoproteins CD8 and CD4 enhance T cell antigen recognition by binding to MHC class I and class II(More)
Homocystinuria is an inborn error of methionine metabolism that results in raised serum levels of the highly reactive thiol-containing amino acid homocysteine. Homocystinurics often exhibit phenotypic abnormalities that are similar to those found in Marfan syndrome (MFS), a heritable connective tissue disorder that is caused by reduced levels of, or defects(More)
SUMMARY It is becoming apparent that gamma delta T cells form an important part of the adaptive immune response. However, the ligands recognized by gamma delta T cell receptors (TCRs) and the exact biological function of the cells that express this receptor remain unclear. Numerous studies have shown that the dominant human peripheral blood subset of gamma(More)
CD8(+) cytotoxic T lymphocytes (CTL) are key determinants of immunity to intracellular pathogens and neoplastic cells. Recognition of specific antigens in the form of peptide-MHC class I complexes (pMHCI) presented on the target cell surface is mediated by T cell receptor (TCR) engagement. The CD8 coreceptor binds to invariant domains of pMHCI and(More)
Fibrillin-1 is a 350 kDa calcium-binding protein which assembles to form 10-12 nm microfibrils in the extracellular matrix (ECM). The structure of fibrillin-1 is dominated by two types of disulfide-rich motifs, the calcium- binding epidermal growth factor-like (cbEGF) and transforming growth factor beta binding protein-like (TB) domains. Disruption of(More)