Learn More
It has recently been proposed, on the basis of a theoretical analysis, that the folding of the mucosa provides a significant component of airway stiffness. The model predicted that the stiffness of an airway was directly related to the number of epithelial folds that developed. In this study we examine the possibility that the folding pattern is determined(More)
The epithelial folding that occurs during bronchoconstriction requires that the pressure on the muscle side of the folding membrane be greater than that on the lumen side. The pressure required for a given level of folding depends on the elastic properties of the tissue and on the geometry of the folding. To quantify the elastic properties, uniaxial tensile(More)
Magnetic resonance micro-imaging has been used to visualise the movement of water during the drying of Pinus radiata D. Don (radiata pine) wood samples of varying annual ring orientation and dimension. The drying process has shown a strong influence of annual ring orientation for thin boards with drying deviating from the classical core-shell model.(More)
Magnetic resonance microscopy is used to non-invasively measure the radial velocity distribution in Couette flow of erythrocyte suspensions of varying aggregation behavior at a nominal shear rate of 2.20 s(-1) in a 1 mm gap. Suspensions of red blood cells in albumin-saline, plasma and 1.48% Dextran added plasma at average hematocrits near 0.40 are studied,(More)
Microorganisms that colonize surfaces, biofilms, are of significant importance due to their role in medical infections, subsurface contaminant remediation, and industrial processing. Spatially resolved data on the distribution of biomass within a capillary bioreactor, the heterogeneity of the biofilm itself and the impact on transport dynamics for a(More)
Nanomedicine directed at diagnosis and treatment of infections can benefit from innovations that have substantially increased the variety of available multifunctional nanoplatforms. Here, we targeted a spherical, icosahedral viral nanoplatform to a pathogenic, biofilm-forming bacterium, Staphylococcus aureus. Density of binding mediated through specific(More)
The theoretical problem of how to describe apparent image spin density under conditions of restricted diffusion, given any general gradient sequence, is intrinsically complex. Here we demonstrate a simple approach to calculating the signal and the corresponding density in nuclear magnetic resonance (NMR) imaging experiments by means of an impulse-propagator(More)
Biofilm growth in porous media is difficult to study non-invasively due to the opaqueness and heterogeneity of the systems. Magnetic resonance is utilized to non-invasively study water dynamics within porous media. Displacement-relaxation correlation experiments were performed on fluid flow during biofilm growth in a model porous media of mono-dispersed(More)
Noninvasive measurements of hydrodynamic dispersion by nuclear magnetic resonance (NMR) are made in a model porous system before and after a biologically mediated precipitation reaction. Traditional magnetic resonance imaging (MRI) was unable to detect the small scale changes in pore structure visualized during light microscopy analysis after destructive(More)
Subsurface biofilms are central to bioremediation of chemical contaminants in soil and groundwater whereby micro-organisms degrade or sequester environmental pollutants like nitrate, hydrocarbons, chlorinated solvents and heavy metals. Current methods to monitor subsurface biofilm growth in situ are indirect. Previous laboratory research conducted at MSU(More)